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a b s t r a c t

This paper proposes an iterative computation of sparse representations of functions defined on Rd , which
exploits a formulation of the sparsification problem equivalent to Support Vector Machine and based on
Tikhonov regularization. Through this equivalent formulation, the sparsification reduces to an approxi-
mation problem with a Tikhonov regularizer, which selects the null coefficients of the resulting approx-
imation. The proposed multi-resolutive sparsification achieves a different resolution in the
approximation of the input data through a hierarchy of nested approximation spaces. The idea behind
our approach is to combine a smooth and strictly convex approximation of the l1-norm with Tikhonov
regularization and iterative solvers of linear/non-linear equations. Firstly, the iterative sparsification
scheme is introduced in a Reproducing Kernel Hilbert Space with respect to its native norm. Then, the
sparsification is generalized to arbitrary function spaces using the least-squares norm and radial basis
functions. Finally, the discrete sparsification is derived using the eigendecomposition and the spectral
properties of sparse matrices; in this case, the computational cost is O(nlogn), with n number of input
points. Assuming that the data is supported on a (d � 1)-dimensional manifold, we derive a variant of
the sparsification scheme that guarantees the smoothness of the solution in the ambient and intrinsic
space by using spectral graph theory and manifold learning techniques. Finally, we discuss the multi-
resolutive approximation of d-dimensional data such as signals, images, and 3D shapes.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Representing a signal as a linear combination of a set of atoms
of a given dictionary is used in a wide range of applications, such as
approximation, denoising, and compression. Two main elements
characterize the final representation: (i) the properties of the
atoms such as linear independence, orthogonality, redundancy,
signal-awareness and (ii) the sparseness of the linear representa-
tion, which is given by the number of non-null coefficients. Defin-
ing sparse representations with respect to dictionaries reacher
than an orthogonal basis is also fundamental to represent complex
data and to adapt this representation to the features of the data it-
self. For instance, dictionaries of curvelets [8,9] and bandelets
[30,46] are tailored to the local geometric regularity of the input
signal and the coefficients of the corresponding sparse representa-
tions are useful to identify geometric features; e.g., sharp bound-
aries and edge orientation in images. Furthermore, the
computation of sparse representations with respect to a given dic-
tionary can be combined with an update of its atoms in order to
improve the data fitting [1]. Main applications of sparse represen-
tations in computer vision and image understanding include face
recognition [61], data segmentation [20,50], image super-resolu-
tion [62], denoising [37], and classification [35,36].

Given a signal f : Rd ! R and a dictionary B :¼ fuiðxÞg
n
i¼1 of

atoms, sparse coding refers to the problem of computing the coef-
ficients a :¼ ðaiÞni¼1 of the function gðxÞ ¼

Pn
i¼1aiuiðxÞ that approx-

imates f, involves the smallest number of atoms, and provides the
highest accuracy among all the approximations of f generated by B.
In this context, compressive sampling theory [8,15] has shown that
signals can be accurately approximated from a number of samples
that is lower than the one imposed by the Nyquist sampling
theory.

According to [14,52], the coefficient vector a, which defines the
sparse representation g : Rd ! R of f, solves the minimization
problem

arg min
a2Rn
fEðf ; gÞ þ �kak0g; gðxÞ :¼

Xn

i¼1

aiuiðxÞ; ð1Þ

where the term E(f,g) is the approximation error between f and g
with respect to the loss function E(�, �); the sparsification order
kak0 is given by the number of non-null coefficients; and the posi-
tive constant � controls the trade-off between these two terms.

To measure the approximation error between the maps f and g,
common choices are the native distance Eðf ; gÞ :¼ 1

2 kf � gk2
H in a

Reproducing Kernel Hilbert Space (RKHS) H; the l2-norm
Eðf ; gÞ :¼ 1

2 kf � gk2
2 of the values f :¼ ðf ðxiÞÞni¼1; g :¼ ðgðxiÞÞni¼1 at

the points of P :¼ fxign
i¼1; and the �-insensitive cost function

[14,52]
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Eðf ; gÞ :¼
Xn

i¼1

Cðf ðxiÞ � gðxiÞÞ; CðtÞ :¼ jtj� :¼
0 if jtj < �;
jtj � � otherwise:

�

Since the minimization of the objective function in Eq. (1) is
NP-hard, the sparsification term kak0 is usually approximated by
the lp-norm kakp :¼

Pn
i¼1jaijp

� �1=p and the corresponding sparsifica-
tion results in a convex minimization problem. On the one hand, for
0 6 p < 1 the lp-norm is not strictly convex [25,47–49] and the cor-
responding problem has local extrema that might be identified as
solutions during the search of the global minimum. On the other
hand, the l1-norm guarantees the uniqueness of the solution and
provides a representation sparser than the l2-norm. To avoid over-
sampling, an iterative re-weighted l2-norm minimization, which
provides a sparsity percentage lower than the l2-norm, has been
proposed in [28]. From a general perspective, the l1-norm is prefer-
able to the l2-norm sparsification term because the former avoids to
penalize outliers in the sampled data and to distribute the residual
error in the objective functional [8,15,58]. Although the l0-norm
provides the sparsest solution, the assumption of dealing with a
bounded noise generally guarantees that the l1-norm sparse repre-
sentations are significative and stable to noise and outliers.

The basis pursuit de-noising [11], regularized logistic regression
[24,41,45,51], standard [39] and orthogonality matching pursuit
methods [10,38,43] use the l1-norm as sparsification term. Since
the l1-norm is not differentiable at zero, the sparsification is con-
verted to a constrained optimization problem [32], whose number
of unknowns is twice the number of input variables. Alternatively,
the l1-norm is approximated by a second order Taylor expansion of
the objective function [24], which is minimized using the least-
squares angle regression [18] and the quasi-Newton algorithm
[2]. The sparsification problem is also solved through an incremen-
tal approach [32], which is based on the conjugate gradient and
avoids the discontinuity of the first order derivatives of the l1-norm.
Alternative approaches apply the maximum a posteriori estimation
[33,34,42] and uncertainty criteria [16,17,19,21,26]. Finally, the
probabilistic Bayesian learning framework [57] is capable of
further increasing the sparsification rate with respect to SVMs
and applies to arbitrary kernels.

Aims and contributions This paper discusses an iterative compu-
tation of sparse and multi-resolutive representations of an arbi-
trary function, which achieves a different resolution through a
hierarchy of nested approximation spaces. The proposed approach
exploits a formulation [22] of the sparse approximation problem
equivalent to Support Vector Machine and based on Tikhonov reg-
ularization. Through this equivalent formulation, the sparsification
reduces to an approximation problem with a Tikhonov regularizer,
which selects the null coefficients of the resulting approximation.
The idea behind our sparsification is to combine a smooth and
strictly convex approximation of the l1-norm with Tikhonov regu-
larization and iterative solvers of linear or non-linear equations.
The proposed approach also guarantees good generalization per-
formances and applies to arbitrary function spaces, whose basis
is not necessarily associated to a Mercer kernel. Finally, it provides
a sequence of nested approximation spaces, which are generated
by those functions selected during the computation of the sparsi-
fied solution. We also discuss the multi-resolutive approximation
of d-dimensional data such as signals, images, and 3D shapes.

To introduce the sparsification scheme, we firstly assume thatH
is a Reproducing Kernel Hilbert Space (RKHS) [3]; in this case, the
native norm of H allows us to enforce the accuracy and smooth-
ness of the sparse approximation. Using the equivalence between
Support Vector Machine and Tikhonov regularization [22] in a
RKHS, we approximate a real-valued function with sparse linear
models, whose coefficients are fitted using a smoothed version of
the l1-regularization. This aim is achieved by replacing the l1-norm

with a smooth and strictly convex approximation; then, the corre-
sponding sparsification functional is exactly evaluated and no
approximation is required. Finally, the sparsification problem is
converted into a system of non-linear equations, whose sparse
coefficient vector is computed by applying a fixed point iteration
and solving a sequence of linear systems.

Using radial basis functions and least-squares techniques, the
second part of the paper generalizes the iterative sparsification
scheme to arbitrary function spaces, which are not necessarily
associated to Mercer kernels. Assuming that the data is supported
on a (d � 1)-dimensional manifold, we also derive a variant of the
proposed approach that guarantees the smoothness of the solution
in the ambient and intrinsic space by using spectral graph theory
and manifold learning techniques. Diagonalizing the Gram matrix
of the sparsification normal equation, the unknown coefficients be-
come independent; i.e., each non-linear equation involves only one
unknown and its solution is computed in explicit form.

Applying iterative solvers instead of decomposition methods for
constrained convex minimization problems has the following
advantages with respect to previous work. The computational cost
of the overall framework is O(r(n + nlogn)) instead of O(n3.5), where
n and r, r� n, are the number of input data and steps of the itera-
tive sparsification scheme, respectively. The solution of the sparsi-
fication system is well-conditioned as a matter of the underlying
regularization framework and based on a global sparsification pro-
cedure, which avoids time-consuming and a posteriori local up-
dates of the model. Furthermore, at each iteration the update of
the coefficient matrix involves only its diagonal elements, takes
O(n) time, and preserves its sparsity and symmetric structure. Fi-
nally, the input variables are not duplicated, thus reducing the
memory allocation, which is one of the main drawbacks in case
of a large amount of data. Since each iteration provides an approx-
imate reconstruction of the input function f : Rd ! R, the iterative
solver induces a hierarchy of sparse representations (g(r))r of f,
which belong to a sequence of nested spaces ðHrÞr ; Hrþ1 #Hr ;

r P 1.
The paper is organized as follows. First, we introduce the pro-

posed sparsification scheme in Reproducing Kernel Hilbert Spaces
(Section 2). Then, we derive a least-squares variant and its discrete
counterpart (Section 3). Finally, we outline open issues and future
work (Section 4).

2. ‘‘Iterative’’ sparse approximation in Reproducing Kernel
Hilbert Spaces

Replacing the l1-norm with a smooth approximation, we define
an iterative sparsification scheme (Section 2.1) in a RKHS with re-
spect to its native norm. Then, we discuss the iterative computa-
tion of the sparsified solution (Section 2.2), and the multi-
resolutive structure of the sparsification scheme (Section 2.3). Fi-
nally, the generalization of the sparsification scheme to arbitrary
function spaces is addressed in Section 3.

2.1. Sparsification in Reproducing Kernel Hilbert Spaces

Let H be a Reproducing Kernel Hilbert Space [3] endowed with
the scalar product h�; �iH and norm k � kH induced by a positive def-
inite, symmetric kernel K : Rd � Rd ! R. Common choices of K(�,�)
are the Gaussian Kðx; yÞ :¼ expð�kx� yk2

2Þ, polynomial K(x,y):¼
(1 � hx,yi2)s, and compactly supported [40,53] kernels. Let
g : Rd ! R

gðxÞ :¼
Xn

i¼1

aiKðx;xiÞ; a :¼ ðaiÞni¼1 2 Rn;

be a map in the linear space Hn #H generated by the basis
B :¼ fuiðxÞg

n
i¼1, where each function ui(x):¼K(x,xi) is induced by
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