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a b s t r a c t

In this paper we introduce a minimum barrier distance, MBD, defined for the (graphs of) real-valued
bounded functions fA, whose domain D is a compact subsets of the Euclidean space Rn. The formulation
of MBD is presented in the continuous setting, where D is a simply connected region in Rn, as well as in
the case where D is a digital scene. The MBD is defined as the minimal value of the barrier strength of a
path between the points, which constitutes the length of the smallest interval containing all values of fA

along the path.
We present several important properties of MBD, including the theorems: on the equivalence between

the MBD qA and its alternative definition uA; and on the convergence of their digital versions, cqA and cuA ,
to the continuous MBD qA = uA as we increase a precision of sampling. This last result provides an esti-
mation of the discrepancy between the value of cqA and of its approximation cuA . An efficient computa-
tional solution for the approximation cuA of cqA is presented. We experimentally investigate the
robustness of MBD to noise and blur, as well as its stability with respect to the change of a position of
points within the same object (or its background). These experiments are used to compare MBD with
other distance functions: fuzzy distance, geodesic distance, and max-arc distance. A favorable outcome
for MBD of this comparison suggests that the proposed minimum barrier distance is potentially useful
in different imaging tasks, such as image segmentation.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Over the past several decades, distance transform (DT) [1–7]
has been widely used as an effective tool for analyzing object mor-
phology and geometry [8–10]. Most DT measures described in the
literature essentially capture the Euclidean distance of a candidate
point from a target set, often the background. Rosenfeld and Pfaltz
[11] introduced the simple yet fundamental idea that, in a digital
grid, the global Euclidean distance transform may be approximated
by propagating local distances between neighboring pixels. Borgef-
ors [2,3] extensively studied DTs for binary objects including the
popular algorithm [2] that computes DT by using different local
step lengths for different types of neighbors. Also, she studied
the geometry and equations of 3D DT and presented a two-pass
raster scan algorithm for computing approximate Euclidean dis-
tance transform [3]. An algorithm for computing in linear time
the exact Euclidean distance transform for the rectangular digital
images was described in [12] and elaborated on in [13].

Other authors have considered distance functions where the
image data is taken into account, see, e.g., [5,14–16]. Distance
transforms for such distance functions are typically computed on
discrete sets using variations on Dijkstra’s algorithm. Falcão et al.
showed that this method of computation can be used for any
smooth distance function, as defined in [16].

Image processing on fuzzy subsets has gained a lot attention,
[9,10,17,18]. It provides a flexible framework for handling uncer-
tainty, arising from sampling artifacts, illumination inhomogeneities
and other imperfections in the image representation and acquisition
process. Fuzzy sets are defined using a membership function which
gives the degree of belongingness with respect to some set.

In this paper, we introduce a distance function defined for the
real-valued bounded functions fA (so, in particular, for fuzzy sets),
whose domain D is a compact subsets of the Euclidean space Rn.
We refer to the new distance as the ‘‘minimum barrier distance’’
and study its properties in the continuous setting, where D is a
simply connected region in Rn, as well as in the case where D is
a digital scene. In image processing and computer vision, ordinary
and fuzzy distance functions [1–6,11,14–16] have widely been
used to represent a spatial relation between each pair of points
in a Euclidean space or a fuzzy subset. For example, ordinary dis-
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tance function, commonly used for binary images, is a measure of
the shortest digital path length between two points while, as
viewed by Saha et al. [5], fuzzy distance is a measure of the ‘‘min-
imum material to be traversed’’ to move from one point to the
other where the fuzzy membership function is linked to local
material density. Under both ordinary and fuzzy distance frame-
works, the length of a path strictly increases as the path grows.
The formulation of minimum barrier distance function possesses
the following property: The length of a path may remain constant
during its growth until a new stronger barrier is met on the path.
This subtle shift in the notion of path length allows the new dis-
tance function to capture separation between two points in the
sense of ‘‘connectivity’’ [19] in a fuzzy set unlike geometric proper-
ties commonly represented by existing distance functions. Thus, it
may be an interesting avenue to study strengths and limitations of
the new function that theoretically behaves like a distance while
resembling to ‘‘anti-connectivity’’ from a user perspective. For
example, the new distance may be useful to determine minimum
barrier to move from one region to another and also, to locate
the minimum barrier path. In the context of image processing
and computer vision, the new distance function may be useful in
image segmentation and region growing.

We show that (pseudo-)metric properties of the ‘‘minimum
barrier distance’’ are maintained by its formulation in a digital grid.
We give examples that show that the minimum-barrier distance
cannot be computed using the standard Dijkstra algorithm men-
tioned above. Instead, we give an approximation of the new dis-
tance measure for fuzzy subsets on digital grids and show that
the minimum barrier distance over a continuous fuzzy subset
can be approximated arbitrarily close in a digital grid by using a
sufficiently dense sampling grid. A similar approximation idea is
presented in [20]. An efficient computational solution for the min-
imum barrier distance is presented using the approximation. The
experiments show that the minimum barrier distance is robust
to noise, blur, and seed point position.

2. The Minimum Barrier Distance in Rn

Let fA : D! R be any bounded function and let A be its graph,
that is,

A ¼ fhx; fAðxÞi : x 2 Dg:

We will concentrate on the functions fA: D ? [0,1], in which case A
will be treated as a fuzzy subset of D and fA will be referred to as the
membership function of A in D. However, the presented material
works for mappings fA with any bounded range. For example, fA(x)
could be the intensity value at x in a digital image.

For D � Rn and p,q 2 D, a path from p to q (in D) is any continu-
ous function p: [0,1] ? D with p = p(0) and q = p(1). We use the
symbol Pp,q (or just P, when p and q are clear from the context)
to denote the family of all such paths. Recall, that D � Rn is path
connected provided for every p,q 2 D there exists a path p:
[0,1] ? D from p to q.

The goal of this section is to introduce and discuss the following
notion of the minimum barrier distance defined for the bounded
continuous functions fA : D! R in the case when D � Rn is path
connected.

Definition 1. For a path p: [0,1] ? D, the barrier along p is defined
as

sAðpÞ ¼max
t

fAðpðtÞÞ �min
t

fAðpðtÞÞ

¼max
t0 ;t1
ðfAðpðt1ÞÞ � fAðpðt0ÞÞÞ: ð1Þ

The minimum barrier distance qA: D � D ? [0,1) for a path con-
nected D � Rn is defined via formula

qAðp; qÞ ¼ inf
p2Pp;q

sAðpÞ: ð2Þ

Notice that the maxima and minima in the formula (1) are at-
tained (by the Extreme Value Theorem), since the composition
function fA � p is continuous. At the same time, the next example
shows that a path that defines the minimum barrier distance qA

is not always attained, that is, the infimum operation in the defini-
tion (2) cannot be replaced with the minimum operation.

Example 1. Let D = [�1,1]2 and T be the topologists sine curve, that
is, T is the closure of the set S = {hx, sin(1/x)i:x 2 (0,1]}, see Fig. 1. If
fA(x) is defined as the Euclidean distance from x 2 D to T, then fA is
continuous. If p = h0,0i and q = h1,sin1i, then infp2Pp;qsAðpÞ ¼ 0, but
sA(p) > 0 for any p 2P (since T is not path connected).

Notice that qA(p,q) is related to the geodesic distance gA(p,q) be-
tween the points hp, fA(p)i and hq, fA(q)i along the surface A. Actu-
ally, qA(p,q) is, in a way, a vertical component of gA(p,q), so that
qA(p,q) 6 gA(p,q).

Definition 2. A function d: D � D ? [0,1) is a metric on a set D
provided, for every x,y,z 2 D,

(i) d(x,x) = 0 (identity)
(ii) d(x,y) > 0 for all x – y (positivity)

(iii) d(x,y) = d(y,x) (symmetry)
(iv) d(x,z) 6 d(x,y) + d(y,z) (triangle inequality)

A function d that obeys properties (i), (iii), and (iv) is called a
pseudo-metric.

In the proof that qA is a pseudo-metric, we will use the following
notion. The concatenation p1 � p2 of the paths p1 and p2 such that
p1(1) = p2(0) is

ðp1 � p2ÞðtÞ ¼
p1ð2tÞ if t 2 ½0;1=2�
p2ð2tÞ otherwise:

�

Remark 1. If p1(1) = p2(0), then sA(p1) + sA(p2) P sA(p1 � p2).

Proposition 1. qA is a pseudo-metric.

Proof. It is obvious that qA is non-negative and symmetric. It satisfies
the identity property (i), since for the constant path px defined via
px(t) = x for all t 2 [0,1], we have qA(x,x)6 sA(px) = fA(x)� fA(x) = 0.

Now we prove the triangular inequality. Given three arbitrary
points p,q,r 2 D and an e > 0 chose the paths pp,q 2Pp,q and
pq,r 2Pq,r such that qA(p,q) P s(pp,q) � e and qA(q,r) P s(pq,r) � e.
Then, using Remark 1, we have

qAðp; qÞ þ qAðq; rÞP sðpp;qÞ � eþ sðpq;rÞ � e P sAðpp;q � pq;rÞ � 2e

P qAðp; rÞ � 2e:

Fig. 1. Topologists sine curve from Example 1.
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