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a b s t r a c t

We propose the 3dSOBS+ algorithm, a newly designed approach for moving object detection based on a
neural background model automatically generated by a self-organizing method. The algorithm is able to
accurately handle scenes containing moving backgrounds, gradual illumination variations, and shadows
cast by moving objects, and is robust against false detections for different types of videos taken with sta-
tionary cameras. Experimental results and comparisons conducted on the Background Models Challenge
benchmark dataset demonstrate the improvements achieved by the proposed algorithm, that compares
well with the state-of-the-art methods.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Several methods have been proposed for moving object detec-
tion based on background subtraction [1–4]. Nonetheless, the best
approach has not yet been devised, as also witnessed by recent
activities aimed at comparing the state-of-the-art methods on pub-
licly available video sequence datasets [5,6].

Moving object detection, as a specific case of object segmenta-
tion, can be viewed as a clustering problem in a feature space de-
rived from the color and motion information, and therefore is well
suited for unsupervised modeling approaches. Unsupervised learn-
ing is in general preferred over supervised learning because the lat-
ter requires a set of training samples, which may not be available,
especially when the image features are unknown or when a certain
degree of automation is desired [7].

Many approaches have been explored, including statistical
background modeling (e.g., single Gaussian [8] or Mixture of Gaus-
sians [9]), clustering-based background modeling (e.g., Codebook
[10]), neural-based background modeling (e.g., [11]), eventually
corroborated by the introduction of fuzzy concepts to handle
imprecision and uncertainties [12,13]. Neural network-based solu-
tions have received considerable attention due to the fact that
these methods are usually more effective and efficient than
traditional ones, relying on the well-known advantages of neural
networks, such as adaptivity, parallelism, and learning [14]. Among
the most recent results, the 3D Self-Organizing Background
Subtraction algorithm [15] implements an approach for moving

object detection based on a neural background model automati-
cally generated by a self-organizing method, that accurately han-
dles most of the well known background maintenance issues.

The main contribution of our paper relies on an enhanced ver-
sion of the algorithm concerning the introduction of: (a) initial
background estimation; (b) shadow detection and removal; and
(c) spatial coherence. These enhancements lead to the 3dSOBS+
algorithm that can accurately handle scenes containing moving
backgrounds, gradual illumination variations, and shadows cast
by moving objects, and provides further robustness against false
detections for different types of videos taken with stationary cam-
eras. Experimental results and comparisons conducted on the
Background Models Challenge (BMC) benchmark dataset [6] dem-
onstrate the improvements achieved by the algorithm and that it
compares well with the state-of-the-art methods.

The paper is organized as follows. In Section 2 we describe in a
unified framework the neural background model adopted from
[15] for moving object detection and its enhanced version here
proposed, while in Section 3 we provide a thorough analysis of
experimental results on the BMC dataset and comparisons with
several state-of-the-art methods. Conclusions are drawn in
Section 4.

2. The 3dSOBS+ algorithm

The proposed algorithm relies on our main idea to adopt a bio-
logically inspired problem-solving method based on visual atten-
tion mechanisms. The aim is to obtain objects that keep the user
attention in accordance with a set of predefined features, including
gray level, motion, and shape features. Our approach defines a
method for the generation of an active attention focus to monitor
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dynamic scenes for surveillance purposes. The idea is to build the
background model by learning in a self-organizing manner many
background variations. Based on the learned background model
through a map of motion and stationary patterns, our algorithm
detects moving objects and selectively updates the background
model. The obtained self-organizing neural network can be orga-
nized as a 2D grid of neurons [11] or a 3D grid of neurons [15],
in both cases producing a representation of training samples with
lower dimensionality, at the same time preserving topological
neighborhood relations of the input patterns.

In the following we will describe the algorithm and how it is
able to tackle the most frequent and difficult background mainte-
nance problems [16], including bootstrapping, illumination
changes, waving trees, cast shadows, and robustness against false
detections.

2.1. Neural background model representation

Given an image sequence Itf g, for each pixel x in the image
domain, a neural map is built, consisting of n weight vectors
mi

tðxÞ; i ¼ 1; . . . ;n, which will be called a model for pixel x. If each
sequence frame has N rows and P columns, the complete set of
models MtðxÞ ¼ ðm1

t ðxÞ; . . . ;mn
t ðxÞÞ for all pixels x of the t-th se-

quence frame It is organized as a 3D neural map Bt with N rows,
P columns, and n layers. Therefore, the neural background model
Bt consists of n images Li

t; i ¼ 1; . . . ;n, of the same size of image
It , which we call layers, and each layer Li

t contains, for each pixel
x, the i-th weight vector mi

tðxÞ. A pictorial representation of this
3D neural model can be found in [15].

2.2. Neural background model initialization

In [15], the neural model is initialized by setting all the model
layers equal to the first frame of the sequence. However, in order
to better handle cases where also in the initial frames the back-
ground is occluded by foreground objects (the so-called bootstrap-
ping problem [16]), in this paper we propose to adopt one of the
methods for background estimation, such as those proposed in
[17] and references therein, to achieve an initial estimate E0 of
the scene background. As an example, in our experiments we adopt
the temporal median method [18], that consists in estimating the
initial background E0 as the temporal median over a subset of F ini-
tial sequence frames I0; . . . ; IF�1. Then, the neural background mod-
el B0 is initialized by setting all weight vectors related to a pixel x
equal to the pixel brightness value of the estimated background,
that is,

mi
0ðxÞ ¼ E0ðxÞ; i ¼ 1; . . . ;n: ð1Þ

Therefore, the resulting initial neural map B0 consists of n layers,
each of which is a copy of the estimated background E0.

2.3. Background subtraction and neural background model update

After initialization, at each time step t, background subtraction
is achieved by comparing each pixel x of the tth sequence frame It

with the pixel current model Mt�1ðxÞ, in order to determine if there
exists a best matching weight vector mb

t�1ðxÞ that is close enough to
it. If no acceptable matching weight vector exists, x is detected as
foreground; otherwise, x is detected as a background pixel. In case
of background pixels, further learning of the neural map enables
the adaptation of the background model to slight scene modifica-
tions, such as gradual illumination changes. This learning is
achieved by updating the neural weights according to a visual
attention mechanism of reinforcement, where the best matching

weight vectors, together with their neighborhood, are reinforced
into the neural map.

The above described steps will be detailed in the following sub-
sections, also extending the background model update in order to
enhance robustness against false detections and to better handle
cast shadows.

2.3.1. Finding the best match
At time t, the value ItðxÞ of each incoming pixel x of the t-th se-

quence frame It is compared to the pixel current model
Mt�1ðxÞ ¼ ðm1

t�1ðxÞ, . . ., mn
t�1ðxÞÞ, to determine the weight vector

mb
t�1ðxÞ that best matches it:

dðmb
t�1ðxÞ; ItðxÞÞ ¼ min

i¼1;...;n
dðmi

t�1ðxÞ; ItðxÞÞ; ð2Þ

where the metric dð�; �Þ is suitably chosen according to the specific
color space being considered. For the experiments reported in Sec-
tion 3, the Euclidean distance of vectors in the HSV color hexcone,
as suggested in [19], has been adopted, that gives the distance be-
tween a weight vector mi

t�1ðxÞ and a pixel value ItðxÞ as:

dðmi
t�1ðxÞ; ItðyÞÞ ¼ kðmV �mS � cosðmHÞ;mV �mS � sinðmHÞ;mV Þ

� ðIV � IS � cosðIHÞ; IV � IS � sinðIHÞ; IV Þk2
2; ð3Þ

where ðmH;mS;mV Þ and ðIH; IS; IV Þ indicate the hue, saturation, and
value components of mi

t�1ðxÞ and ItðxÞ, respectively.

2.3.2. Updating the model
In order to adapt the neural background model to scene modi-

fications, the model Mt�1ðxÞ for pixel x at time t should be updated.
The best matching weight vector mb

t�1ðxÞ (computed according to
Eq. (2)) and its neighboring weight vectors of the b-th layer of
model Bt are updated according to weighted running average:

mb
t ðyÞ ¼ ð1� aðx; yÞÞmb

t�1ðyÞ þ aðx; yÞItðyÞ; 8y 2 Nx: ð4Þ

Here Nx ¼ y : x� yj j 6 w2Df g is a 2D square spatial neighborhood of
x with half-width w2D including x. Moreover,

aðx; yÞ ¼ c � G2Dðy � xÞ � 1� DtðxÞð Þ � 1� StðxÞð Þ; ð5Þ

where c represents the learning rate, G2Dð�Þ ¼ N ð�; 0;r2
2DIÞ is a 2D

Gaussian low-pass filter [20] with zero mean and r2
2DI variance,

DtðxÞ indicates the background subtraction mask value for pixel x,
that will be described in Section 2.3.3, and StðxÞ is the shadow mask
value indicating if pixel x belongs to the shadow cast by an object in
the scene, that will be described in Section 2.3.4. The aðx; yÞ values
in Eq. (5) are weights that allow the neural model to smoothly take
into account the spatial relationship between current pixel x and its
neighboring pixels y 2 Nx, thus preserving topological properties of
the input (close inputs correspond to close outputs). The choice of
the learning factor c depends on the scene variability: large c values
enable the network to faster learn changes corresponding to the
background, but also leading to false negatives, that is, inclusion
into the background model of pixels belonging to foreground mov-
ing objects. On the contrary, lower learning rates make the network
slower to adapt to rapid background changes, making the model
more tolerant to errors due to false negatives through self-organiza-
tion. Indeed, weight vectors of false negative pixels are readily
smoothed out by the learning process itself.

The 2D update of Eq. (4) involves only model weight vectors
lying in the same layer b as the best matching weight vector
mb

t�1ðxÞ. In order to further enable the reinforcement of mb
t�1ðxÞ

in the model for pixel x, also weight vectors of x belonging to layers
close to layer b are updated. This further update is achieved by
weighted running average:

mi
tðxÞ ¼ ð1� dðxÞÞmi

t�1ðxÞ þ dðxÞItðxÞ; ð6Þ
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