Tetrahedron Letters 57 (2016) 2488-2491

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Palladium-catalyzed double C–H functionalization of 2-aryl-1, 3-dicarbonyl compounds: a facile access to alkenylated benzopyrans

etrahedro

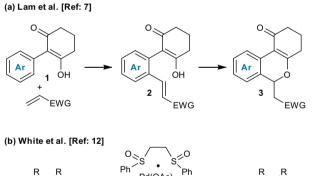
Subrahmanyam Choppakatla^{a,b}, Aravind Kumar Dachepally^b, Hari Babu Bollikolla^{a,*}

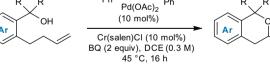
^a Department of Chemistry, Acharya Nagarjuna University, NNagar-522 510, Guntur, AP, India
^b Arka Research Labs, Plot No. 16, CFC Area, IDA Nacharam, Hyderabad 500076, Telangana, India

ARTICLE INFO

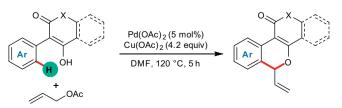
ABSTRACT

Article history: Received 18 March 2016 Revised 20 April 2016 Accepted 22 April 2016 Available online 23 April 2016


Keywords: Catalysis Palladium Benzopyrans Allylation C-H activation Annulation

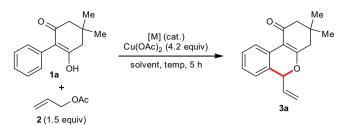

Transition metal-catalyzed C-H functionalization of unreactive bonds has gained eminence as a powerful and transformative tool in synthetic chemistry,¹ with additional applications to natural product syntheses,² drug discovery,³ and material sciences.⁴ The most advantageous use of this strategy is the atom-economic construction of C-C, C-N, and C-O bonds by functionalization of the aromatic $C(sp^2)$ -H bonds, directed by a coordinating functional group delivering a diverse variety of heterocyclic compounds.⁵ Recently, Lam and co-workers have developed catalytic oxidative annulations of α -aryl cyclic 1,3-dicarbonyl compounds (or their enol tautomers) with various coupling partners including alkynes,⁶ terminal alkenes (Scheme 1a),⁷ 1,3-dienes,⁸ and 1,3-enynes⁹ that provide efficient access to carbo- and heterocycles. On the other hand, allyl functionality is a versatile tool offering a range of opportunities for further functionalizations.¹⁰ Recently, several methods have been developed for the direct allylation of aromatic C-H bonds using transition-metal catalysts.¹¹ In addition, allylic C-H oxidation is an established and well-studied strategy used to construct complex organic molecules (Scheme 1b).¹² In this regard, Pd (II)/bis-sulfoxide-catalyzed allylic C-H functionalizations of terminal olefins have demonstrated broad applicability in synthetic methodology.¹³

* Corresponding author. Tel./fax: +91 863 234 6573. *E-mail address*: dr.b.haribabu@gmail.com (H.B. Bollikolla).


The present study reports the development of a palladium-catalyzed oxidative annulation/nucleophilic substitution sequence affording a library of alkenylated benzopyrans using 2-aryl-1,3-dicarbonyl compounds and allylic acetate. The process is compatible to a wide range of substrates with good functional group tolerance producing the desired heterocycles in moderate to good yields.

© 2016 Elsevier Ltd. All rights reserved.

(c) This work



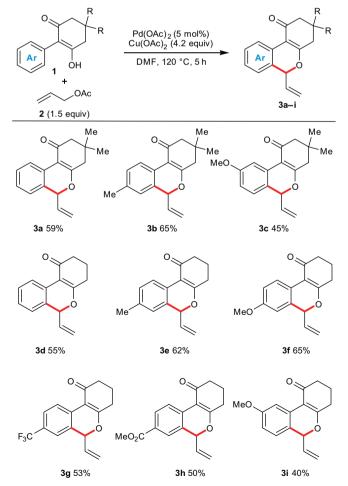
Scheme 1. Pd-catalyzed oxidative annulations and allylic C-H oxidation.

Table 1

Optimization of reaction conditions for the synthesis of **3a**^a

 Entry	[M]	Mol (%)	Solvent	Temp (°C)	Yield ^b (%)
1	$Pd(OAc)_2$	5	DMF	90	40
2	$Pd(OAc)_2$	5	DMF	120	59
3	$Pd(OAc)_2$	10	DMF	120	62
4	$Pd(OAc)_2$	5	t-AmOH	120	20
5	$Pd(OAc)_2$	5	Dioxane	120	35
6	[RuCl ₂ (p-cymene)] ₂	2.5	DMF	120	<5
7	[RuCl ₂ (p-cymene)] ₂	2.5	t-AmOH	120	NR
8	_	_	DMF	120	NR
9 ^c	$Pd(OAc)_2$	5	DMF	120	NR
10 ^d	$Pd(OAc)_2$	5	DMF	120	37

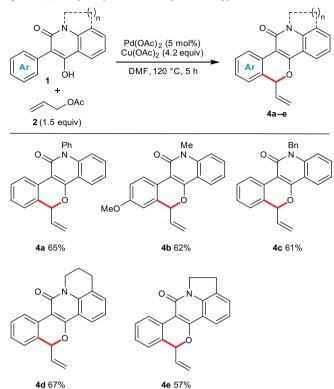
^a Reactions were conducted using 0.50 mmol of **1a**.


^b Isolated yield.

^c Reaction conducted without Cu(OAc)₂.

^d Reaction conducted in the presence of K_2CO_3 (2.0 equiv). DMF = *N*,*N* - dimethylformamide, *t*-Am = *tert*-amyl.

Table 2


Pd(II)-catalyzed synthesis of alkenylated benzopyrans^a

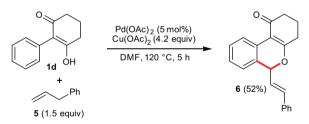

^a Reactions were conducted with 0.50 mmol scale. Yields are of isolated material.

Table 3

Scope of Pd(II)-catalyzed synthesis of alkenylated benzopyrans^a

^a Reactions were conducted with 0.50 mmol scale. Yields are of isolated material.

Scheme 2. Oxidative annulation reaction of allylbenzene with 3-hydroxy-2-phenyl-2-cyclohexenone.

In the present work, we report the efficient construction of alkenylated benzopyrans using a Pd(II)-catalyzed oxidative coupling of 1,3-dicarbonyl compounds with allyl acetate. This process involves C–H activation of a $C(sp^2)$ –H bond to generate an allylated product which on nucleophilic substitution to a π -allyl Pd-species affords the desired heterocycles (Scheme 1c).

We initiated our study by exploring the reaction of 2-phenyldimedone (**1a**) with allyl acetate **2** (1.5 equiv) in the presence of Pd(OAc)₂ (5 mol %) in DMF using Cu(OAc)₂ (4.2 equiv) as an oxidant. Pleasingly, the alkenylated benzopyran product **3a** was obtained in 40% yield after reacting for 5 h at 90 °C (Table 1, entry 1). By elevating the reaction temperature to 120 °C, the yield of the desired product was increased to 59% (entry 2). A comparable yield of **3a** was achieved using 10 mol % of Pd(OAc)₂ in DMF (entry 3). Other solvents such as *t*-AmOH and dioxane provided limited reaction and gave inferior results (entries 4 and 5). [RuCl₂(*p*-cymene)]₂ complex¹⁴ commonly employed in C–H functionalizations was completely unproductive in different solvents (entries 6 and 7). No product formation was observed in the absence of the palladium catalyst or Cu(OAc)₂ (entries 8 and 9).

Download English Version:

https://daneshyari.com/en/article/5258890

Download Persian Version:

https://daneshyari.com/article/5258890

Daneshyari.com