

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

New spiropyrans based on 1,3-benzoxazine-2-one: acid catalyzed synthesis and theoretical insight into the photochromic activity

Ilya V. Ozhogin ^{a,*}, Igor V. Dorogan ^a, Boris S. Lukyanov ^a, Eugene L. Mukhanov ^a, Valery V. Tkachev ^b, Anatoly V. Chernyshev ^a, Maria B. Lukyanova ^a, Sergey M. Aldoshin ^b, Vladimir I. Minkin ^a

a Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation

ARTICLE INFO

Article history: Received 17 February 2016 Revised 9 April 2016 Accepted 15 April 2016 Available online 19 April 2016

Keywords: Spiropyran 1,3-Benzoxazine Photochromism Acid catalyzed synthesis DFT calculations

ABSTRACT

A new series of spiropyrans based on 1,3-benzoxazine-2-one were synthesized using acid catalysis. Contrary to expectations, 6'-bromo-6-chloro-3-methyl-8'-nitro-spiro[1,3-benzoxazine-4,2'-chromene]-2-one and 6,6'-dichloro-3-methyl-8'-nitro-spiro[1,3-benzoxazine-4,2'-chromene]-2-one did not exhibit photochromic behavior, which was explained by TD DFT calculations to be a consequence of the existence of an effective non-radiative decay pathway allowing the structural relaxation of the spiropyrans in the first singlet excited state.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

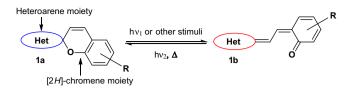
Spiropyrans (1) represent one of the most intensively studied classes of organic photochromic compounds. ¹⁻⁴ At ambient conditions these compounds are usually more stable in the non-colored ring-closed form 1a, but under the action of external stimuli (light, heat, mechanical stress, pH) they can undergo transformation into the deeply colored open merocyanine form (1b, Scheme 1).

As easy tunable molecular switches, spiropyrans have found diverse applications in the areas of chemosensors, ^{5–8} molecular electronics, ^{9–13} non-linear optics, ^{14–16} bio-imaging, ^{17–19} control of cellular processes, ^{20–22} photocontrolled drug delivery, ^{23–25} and the development of dynamic smart materials. ²⁶

Most of the current research of spiropyrans is focused on indoline derivatives (**2**, Scheme 2) due to the ready availability of starting reagents and fairly simple and well developed methods of synthesis. ^{27,28} Much less studied are spiropyrans with other heteroarene fragments, even though the local atomic environment of the spirocyclic carbon has a direct impact on the photochemical parameters of photochromic compounds, such as the quantum yield of photoisomerization, position of the absorption maxima, lifetime of the open form and resistance to photodegradation. ^{2–4} Therefore, the search for new spiropyrans with different heteroar-

E-mail addresses: iozhogin@sfedu.ru, lab811@ipoc.sfedu.ru (I.V. Ozhogin).

ene parts presents a promising direction of research in the chemistry of organic photochromes.


This work is aimed at the synthesis and investigation of spiropyrans of the 1,3-benzoxazine-2-one series $\bf 3$, which differ from the previously studied spirocompounds of the 1,3-benzoxazine-4-one series $\bf 4^{29}$ by the relative position of the carbonyl group and the spirocyclic carbon atom. We envisaged that comprehensive study of the effect of structural modifications on the photochemical activity of spiropyrans would facilitate a deeper insight into their photochromic properties and guide the rational design of compounds with predetermined properties.

Results and discussion

To obtain the required 4-methylene-1,3-benzoxazin-2-one, a two-step procedure of a previously reported one-pot synthesis was chosen involving the condensation of an o-hydroxyacetophenone with alkylamines and cyclization of the resulting Schiff base using triphosgene. 30,31 The method was modified by the utilization of chloroform as a solvent and bubbling methylamine through the warm solution of 5-chloro-2-hydroxyacetophenone 5. This allowed use of the intermediate Schiff base 6 without isolation and purification. The new methylene base, 6-chloro-3-methyl-4-methylene-1,3-benzoxazine-2-one 7, was synthesized in 84% yield and the structure proven by NMR, IR, and mass spectroscopy (ESI).

b Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Akad. Semenova Ave., 142432 Chernogolovka, Moscow Region, Russian Federation

^{*} Corresponding author.

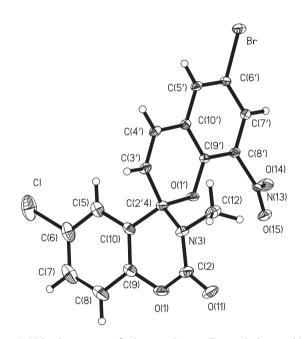
Scheme 1. Reversible isomerization of spiropyrans.

The basic procedure for the synthesis of spiropyrans consisting of heating the methylene base with the corresponding aldehyde in polar protic or aprotic solvents (MeOH, EtOH, i-PrOH, CHCl₃, MeCN, THF) was unsuccessful because of the poor solubility of the base or its low reactivity in these solvents. A positive result was reached by carrying out the reactions under acid catalysis. Heating methylene base **7** and salicylaldehydes **8** in glacial acetic acid at reflux in the presence of catalytic acid (Scheme 3) allowed us to obtain spiropyrans of a new series **3a,b** with medium yields and short reaction times. The catalyst in this case was *in situ* generated protonated acetic acid [MeC(OH)₂] $^{+}$ ClO $_{4}^{-}$. 32,33

It is worth noting that spiropyrans **3** can only be obtained by the reaction shown in Scheme **3** using aldehydes **8** bearing at least two electron withdrawing substituents. Attempts to obtain the targeted products using salicylaldehydes either with one or without acceptor group failed. Therefore, both spiropyrans **3a,b** contain acceptor substituents in the 6′ and 8′ positions of the [2*H*]-chromene moiety. The structures of compounds **3a,b** were determined using NMR (¹H, ¹³C, ¹H-¹H COSY, ¹H-¹H NOESY, HMQS ¹H-¹³C), IR, MS, and elemental analysis.³⁴ The molecular structure of compound **3a** was additionally clarified by single crystal X-ray diffraction (Fig. 1).³⁵

The study of the photochromic properties of spiropyrans **3a,b** was carried out by irradiation of their solutions in different solvents (toluene, acetonitrile, acetone) by UV light in the steady state mode and under nanosecond flash photolysis conditions. In all cases no changes in the absorption spectra of spiropyrans were initiated, thus indicating that irradiation of compounds **3** with UV light does not result in the formation of their colored merocyanine forms.

We were puzzled by the obtained results because many structurally related spiropyrans **4** based on 1,3-benzoxazine-4-one exhibit photochromic properties both in solutions and the solid state. ^{29,36,37}


The main reason for the lack of photochromic properties of compounds **3a,b** may be the existence of effective deactivation pathways of the excited states of spiropyrans at the initial stages of the photoinitiated ring opening reaction. To gain insight into the observed phenomenon we performed a comparative theoretical study of compounds **4** and **3a** by means of TD DFT methods.

Scheme 2. Representative classes of spiropyrans: known indoline **2**, 1,3-benzox-azin-4-one **4** and new 1,3-benzoxazin-2-one **3**.

CI
$$\frac{H_2N-CH_3}{OH}$$
 $\frac{CI_3CO)_2CO}{II}$ $\frac{CI_3CO)_2CO}{II}$ $\frac{CHO}{OH}$ $\frac{R}{R}$ $\frac{CHO}{OH}$ $\frac{CHO}{OH}$ $\frac{R}{R}$ $\frac{CHO}{OH}$ $\frac{CHO}{OH}$ $\frac{R}{R}$ $\frac{CHO}{OH}$ \frac

i: CHCb, 50 °C, 1 h; ii: CHCl₃, rt, 0.5 h, then reflux 2 h, η =84%; iii: AcOH, reflux, 0.5 h, η = 36% (a), 29% (b)

Scheme 3. Acid catalyzed synthesis of novel spiropyrans based on 1,3-benzoxazin-2-one.

Figure 1. Molecular structure of spiropyran **3a** according to single crystal X-ray analysis data.

Table 1 Excitation energy E_{ext} (eV), oscillator strength f and main composition (H = HOMO, L = LUMO) of the first three singlet transitions of compounds **3a**, **4** according to the TD PCM-PBE0/6-311+G(d,p) calculation in toluene solution.

Compound	Transition	Main composition	E_{ext}	f
3a	S ₀ -S ₁ S ₀ -S ₂	H-L H-2-L H-5-L H-7-L	3.4941 3.9212	0.0844 0.0223
4	S_0-S_3 S_0-S_1 S_0-S_2 S_0-S_3	H-1-L H-3-L H-L H-1-L	3.9564 3.6464 3.8626 4.3742	0.0004 0.0012 0.1303 0.0218

According to the calculations (Table 1, Fig. 2) the longest wavelength absorption maximum of **3a** corresponds to the S_0 - S_1 transition with main (HOMO – LUMO) contribution. It can be characterized as a predominately π - π * transition localized within the chromene moiety with a pronounced intramolecular charge transfer toward the nitro group in the 8′ position. Thus, upon

Download English Version:

https://daneshyari.com/en/article/5258956

Download Persian Version:

https://daneshyari.com/article/5258956

<u>Daneshyari.com</u>