ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Palladium-catalyzed arylation/cyclization/desulfonation cascades toward 4-aryl quinolin-2(1*H*)-ones with diaryliodonium salts

Jianwei Han a,b,*, Xunshen Wu , Zhiang Zhang , Limin Wang a,*

- ^a Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
- b Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, PR China

ARTICLE INFO

Article history:
Received 9 June 2017
Revised 11 July 2017
Accepted 18 July 2017
Available online 18 July 2017

Keywords: Arylation Cyclization Diaryliodonium salt 4-Aryl quinolin-2(1H)-ones

ABSTRACT

Palladium-catalyzed cascades of arylation/cyclization/desulfonation of *ortho*-aminocinnamate esters by using diaryliodonium salts afforded a wide range of 4-aryl quinolin-2(1*H*)-ones. As such, the desired 4-aryl quinolin-2(1*H*)-ones with potential biological activity has been synthesized in the yields of 34–96%.

© 2017 Published by Elsevier Ltd.

Introduction

4-Aryl quinolin-2(1*H*)-ones are valuable class of biologically active substances in pharmaceutical research, such as HBV inhibitor (**A**, Fig. 1), Viridicatin (**B**, Fig. 1), Tipifamib (**C**, Fig. 1) and an efficient maxi-K opener (**D**, Fig. 1) to elicit penile erection with a novel mechanism for the treatment of male erectile function. In light of their synthesis, various synthetic methods towards 4-aryl quinolin-2(1*H*)-ones were documented. The condensation of 2-acetamidobenzaldehydes, the cyclization of cinnamanilides or *N*-aryl amides of 3-arylpropynoic acids under the action of strong acids or transition-metal catalysts have been developed to access 4-aryl 2-quinolinone structural motifs. Noteworthy reports are transition-metal catalyzed cyclization of cascades, which provided a more efficient and practical route.

Recently, diaryliodonium salts (Ar₂I⁺X⁻) were well studied in the electrophilic arylations due to their excellent reactivity.⁵ By using Ar₂I⁺X⁻, we reported in 2015 that arylation/cyclization of *ortho*-hydroxylcinnamates by palladium catalysis afforded 4-aryl-coumarin derivatives in good yields.⁶ In a similar pattern, (*E*)-ethyl 3-(2-aminophenyl)-acrylate was also employed in this protocol;

however, only nitrogen-arylated product was furnished without cyclization to give 4-arylquinolinone (1, Scheme 1). Of note, concurrently Kumar and co-workers reported a microwave-assisted oxygen-arylation of quinolones with diaryliodonium salts in the presence of a base, aryloxyquinolines were furnished in good yields (2, Scheme 1).⁷

In principle, diaryliodonium salts were tended to oxyphilic arylations or *N*-arylations of arylamines under a basic reaction medium.⁵ We reasoned that modification of amine group of ethyl 3-(2-aminophenyl)-acrylate to reduce the basicity of arylamine by using a tosyl group, in which the reactivity of ArNHTs was allowed to undergo the cyclization process without *N*-arylative attack, therefore producing 4-aryl quinolin-2(1*H*)-ones (3, Scheme 1). Herein, we reported in detail the cascades of arylation/cyclization/desulfonation in the presence of palladium catalysts by using diaryliodonium salts.

Results and discussion

At the outset of the study, palladium-catalyzed arylative cyclization cascade of ethyl (*E*)-3-(2-((4-methylphenyl) sulfonamido)phenyl)acrylate **1a** with diphenyliodonium triflate **2a** was investigated as a model reaction (Table 1). According to the conditions of our previous arylation/cyclization of cinnamate ester, the procedure also used DMF (dimethylformamide) as solvent in the presence of 10 mol% Pd(OAc)₂ as catalyst at 110 °C, it was pleased

^{*} Corresponding authors at: Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.

 $[\]it E-mail\ addresses: jianweihan@ecust.edu.cn\ (J. Han), wanglimin@ecust.edu.cn\ (L. Wang).$

Fig. 1. Selective samples of 4-arylcoumarin derivatives.

(1)
$$NH_2$$
+ $[Ph_2l]OTf$
 MW, K_2CO_3
toluene, $100^{\circ}C, 5 \text{ min}$

Ph

This report:

(3) NH_2
 NH_2

Scheme 1. Reactions towards 4-arylquinolines by using diaryliodonium salts.

to find that the desired product of **3a** was obtained in 81% yield (Table 1, entry 1). Interestingly, the tosyl group was cleaved off by a desulfonation reaction in one pot under the reaction conditions. The reaction does not work without palladium catalyst, and no product was observed by thin-layer chromatography when copper catalysts of Cul and Cu(OTf)₂ or nickel complex of Ni(dppp)Cl₂ as catalyst were employed in this reaction (Table 1, entries 2–5).

The evaluation of the activity of palladium catalysts showed that 5 mol% $Pd(PPh_3)_4$ gives the best yield of 93% (Table 1, entries 6–9). The examination of the solvent effect with experiments performed in dimethylsulfoxide, dichloroethane, N-methyl pyrrolidinone, acetonitrile, dioxane and N,N-dimethyl formamide suggested that DMF as solvent is the best choice (Table 1, entries 8 and 10–14). Reaction temperature and reaction time were also examined, the temperature of 120 °C and the reaction time of 12 h were found to be the optimal to give the highest yield of

 $\textbf{Table 1} \\ \textbf{Screening of reaction conditions for synthesis of 4-aryl quinolin-2(1H)-ones.} \\ \textbf{\footnote{a}}$

Entry	Cat.	Loading (mol%)	X-	Solvent	Yield (%) ^b
1	Pd(OAc) ₂	10	OTf	DMF	81
2	=	10	OTf	DMF	0
3	CuI	10	OTf	DMF	0
4	Cu(OTf) ₂	10	OTf	DMF	0
5	$Cu(OAc)_2$	10	OTf	DMF	0
6	PdCl ₂	10	OTf	DMF	88
7	$Pd(PPh_3)_4$	10	OTf	DMF	91
8	$Pd(PPh_3)_4$	5	OTf	DMF	93
9	$Pd(PPh_3)_4$	1	OTf	DMF	75
10	$Pd(PPh_3)_4$	5	OTf	DMSO	59
11	$Pd(PPh_3)_4$	5	OTf	DCE	0
12	$Pd(PPh_3)_4$	5	OTf	NMP	48
13	$Pd(PPh_3)_4$	5	OTf	Dioxane	Trace
14	$Pd(PPh_3)_4$	5	OTf	MeCN	Trace
15 [€]	$Pd(PPh_3)_4$	5	OTf	DMF	96
16	$Pd(PPh_3)_4$	5	BF_4	DMF	90
17	$Pd(PPh_3)_4$	5	OTs	DMF	75
18	$Pd(PPh_3)_4$	5	PF ₆	DMF	86
19	$Pd(PPh_3)_4$	5	Br	DMF	Trace
20 ^d	$Pd(PPh_3)_4$	5	PhI	DMF	0

^a Reaction conditions: **1a** (0.5 mmol), **2a** (1 mmol), catalyst, and solvents (2 mL) at $110 \, ^{\circ}\text{C}$ for $12 \, \text{h}$.

^b Isolated yield.

 $^{^{\}rm c}$ The reaction temperature was 120 °C.

d lodobenzene was used in place of 2a.

Download English Version:

https://daneshyari.com/en/article/5258990

Download Persian Version:

https://daneshyari.com/article/5258990

Daneshyari.com