ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Complications in the Castagnoli-Cushman reaction: An unusual course of reaction between cyclic anhydrides and sterically hindered indolenines

Maria Chizhova, Dmitry Dar'in, Mikhail Krasavin*

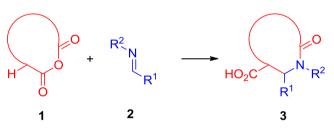
Saint Petersburg State University, Saint Petersburg 199034, Russian Federation

ARTICLE INFO

Article history: Received 27 June 2017 Accepted 23 July 2017 Available online 24 July 2017

Keywords:
Castagnoli-Cushman reaction
Side-reaction
Steric hindrance
Cyclic imines
Indolenines
N-acyliminium species
Mannich reaction
Medium-sized rings

ABSTRACT


Attempted reaction of indolenines (which represent rather sterically hindered cyclic imines) with a series of dicarboxylic acid anhydrides yielded no expected product, the Castagnoli-Cushman lactam. Instead, products presumably formed via *N*-acyliminium species trapping by a carboxylate anion. Among them, hydrolytically labile 2:2 adducts of an indolenine and a cyclic anhydride, containing a 16-membered cyclic core, are particularly intriguing. This result contradicts the recently reported successful Castagnoli-Cushman reaction of indolenines with homophthalic anhydride suggesting a mechanistic switch in the course of the reaction.

© 2017 Elsevier Ltd. All rights reserved.

The formal cycloaddition of α -C—H cyclic anhydrides **1** with imines **2** (formed *in situ* or in a separate chemical step) offers a convenient entry into polysubstituted lactams **3** (Scheme 1). It was discovered by Castagnoli and Cushman over four decades ago¹ and has been referred to as the Castagnoli-Cushman reaction (CCR).

The diversity of cyclic anhydrides employed in this reaction was traditionally limited to homophthalic anhydride (HPA) as well as simple ones such succinic or glutaric; however, the range of structurally more complex anhydrides has been steadily expanding as was recently reviewed.²

Mechanistically, the reaction is thought to proceed via one of two possible mechanisms: (A) N-acylation of the imine component followed by intramolecular trapping of N-acylaminium species $\bf 4$ in Mannich-type fashion and (B) Mannich-type addition of the anhydride's enol form to a protonated iminium species resulting in initial adduct $\bf 5$ which then undergoes intramolecular N-acylation. Both of these pathways can lead to the formation of product lactams $\bf 3$ and often there is no evidence but circumstantial which can allow selecting between them for a given reaction. It is likely that mechanism $\bf A$ dominates for many simple, poorly enolizable cyclic anhydrides. Indeed, it is almost impossible to obtain target lactams $\bf 3$ using α -C—H imines: the initial formation of $\bf 4$ immedi-

Scheme 1. The Castagnoli-Cushman reaction (CCR).

ately leads to the formation of enamides as was recently confirmed. 3,4 At the same time, more enolizable HPA is likely to react via mechanism B based on the fact that several α -C—H imines have been previously condensed with this anhydride (Scheme 2). 5 Moreover, we have recently isolated and characterized an adduct similar to 5 formed in the reaction of HPA with indolenines which spontaneously formed the respective CCR product on standing. 6

The latter reaction showcases the use of indolenines as a special case of cyclic imines for the CCR. Encouraged by its successful realization, we were keen to test other cyclic anhydrides – in particular, glutaric anhydride as well as the recently reported heteroatomincluding analogs of it⁷ (1a-e) – in the reaction with indolenines (6a-c). The reaction was conducted in acetonitrile at ambient temperature (in analogy with the CCR of HPA⁶) and was markedly slow in each case, full consumption of the starting indolenines achieved

^{*} Corresponding author.

E-mail address: m.krasavin@spbu.ru (M. Krasavin).

Scheme 2. Mechanistic pathways for the CCR.

Scheme 3. The expected (left) and observed (right) outcome of the attempted CCR between $\mathbf{6a-c}$ and $\mathbf{1a-e}$.

in 3 days.⁸ At the end of this period a precipitate formed which was collected by filtration. ¹H NMR analysis of the precipitate revealed a complete absence of the characteristic signals⁶ from protons H^a

and H^b which would be present in expected products 7. However, the requisite signals from the indolenines as well as the former anhydride moiety were present in 1:1 ratio. Initially, we hypothesized that the products thus isolated could result from a known⁹ 1,2-addition of carboxylic acid anhydrides to imines and structure 8 was assigned. However, to our great astonishment, when we obtained single-crystal X-ray structures of these compounds, it showed the product to be a bis-lactam/bis-lactone 2:2 adduct of 6 and 1 possessing a 16-membered ring, i.e. 9 (Scheme 3).¹⁰

As it is shown in Table 1, the isolated yields of macrocyclic adducts 9a-h are quite modest. Examination of the filtrate (obtained after isolation of 9) by TLC, LC MS and ¹H NMR revealed the presence of a major product in addition to a number of minor components (minute quantities of 9 among them). Some of compounds **9a-h** were noted to be distinctly unstable to hydrolysis: indeed, their instability prevented compound **9g-h** from being isolated and fully characterized. Therefore, we hypothesized that the major product observed in the filtrate could be the product of hydrolytic degradation of 9 (and also of 8 if it formed initially) by adventitious water. In order to verify that, we conducted the reaction between **6a** and **1e** and then kept the crude product mixture at 5 °C in wet ethyl acetate from which, indeed, expected carboxylic acid 10¹¹ slowly crystallized out in 57% yield (Scheme 4). The structure of 10 was additionally confirmed by single-crystal X-ray analysis (see ESI).

On initial viewing, the formation of products **9** containing a 16-membered cycle seems somewhat counterintuitive as such a process would be disfavored over the formation of product **8** incorporating an eight-membered ring (formation of the latter cannot be either confirmed or ruled out at the moment). However, the appreciable conversion of **1** and **6** into macrocycles **9** can be rationalized as follows. The reaction is likely to commence with *N*-acylation of indolenine **6** with cyclic anhydride **1** leading to the formation of *N*-

Table 116-Membered bis-lactams/bis-lactones **9a-h** obtained in this work.

Compound	Structure	Single-crystal X-ray structure	Isolated yield (%)
9a	Me Ne Ne	A CONTRACTOR OF THE PARTY OF TH	17
9b		NA ^a	27
9c	SO ₂ Ph		18
	N O N PhO ₂ S		

(continued on next page)

Download English Version:

https://daneshyari.com/en/article/5258999

Download Persian Version:

https://daneshyari.com/article/5258999

Daneshyari.com