Tetrahedron Letters 58 (2017) 3901-3904

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Amphimedonoic acid and psammaplysene E, novel brominated alkaloids from *Amphimedon* sp.

etrahedroi

Pierre-Eric Campos^a, Jean-Luc Wolfender^b, Emerson F. Queiroz^b, Laurence Marcourt^b, Ali Al-Mourabit^c, Nicole De Voogd^d, Bertrand Illien^a, Anne Gauvin-Bialecki^{a,*}

^a Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex 9, La Réunion, France

^b School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland ^c Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France ^d Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands

Thatar and Bioartership center, Barthinteg 2, 2000 en 201aen, rien

ARTICLE INFO

Article history: Received 10 July 2017 Revised 24 August 2017 Accepted 29 August 2017 Available online 1 September 2017

ABSTRACT

Examination of the CH_2Cl_2 -MeOH (1:1) extract from the Madagascan sponge *Amphimedon* sp. highlighted two new brominated alkaloids, amphimedonoic acid (1) and psammaplysene E (2), along with the known 3,5-dibromo-4-methoxybenzoic acid (3). Their structures were elucidated by 1D and 2D NMR spectroscopy and HRESIMS data.

© 2017 Elsevier Ltd. All rights reserved.

Keywords: Amphimedon Alkaloids Marine sponge Bromotyrosine derivated

Marine sponges have been reported as a major source of bioactive secondary metabolites with a wide variety of unusual structures.¹ The genus *Amphimedon* has been known to produce various potent bioactive compounds, especially alkaloids with unique structures.^{2–4} As part of our continued search for structurally unique metabolites from marine invertebrates,^{5–7} the sponge *Amphimedon* sp., collected from the Mitsio Islands, Madagascar, was investigated. These investigations afforded two new brominated alkaloids, amphimedonoic acid (1) and psammaply-sene E (2), along with the known 3,5-dibromo-4-methoxybenzoic acid (3).^{8,9} Herein, the isolation and structure elucidation of 1–3 are described.

The sponge Amphimedon sp. (36.2 g, wet weight) collected off the Mitsio Islands, Madagascar, was extracted with $CH_2Cl_2/MeOH$ (1:1). The crude extract (1.5 g) was subjected to MPLC over silica gel and separated into ten fractions (F1-F10) using a combination of isohexane, EtOAc and MeOH of increasing polarity. F9 (15 mg) was subjected to a subsequent reversed phase semi-preparative HPLC separation to yield pure compound **2** (0.7 mg). F10 (32 mg) was subjected to a reversed phase semi-preparative HPLC separation and led to the isolation of pure compounds **1** (2.8 mg), **2** (1.3 mg) and **3** (1.0 mg) (Fig. 1).

Amphimedonoic acid (1) was obtained as a colorless oil. The high resolution electrospray mass spectrum exhibited a molecular ion [M+H]⁺ as a cluster of peaks *m*/*z* 302.0388/304.0388 in a 1:1 ratio, an isotope pattern characteristic of a brominated compound. Accordingly, based on HRESIMS, the molecular formula $C_{12}H_{16}BrNO_3$ (calcd for $C_{12}H_{17}^{79}BrNO_3^+$, 302.0386), with five degrees of unsaturation, was determined. The ¹H and ¹³C NMR data displayed resonances and correlations for one carboxylic acid group, one 1,2,4-trisubstituted aromatic ring, three methylenes, one of which was oxygenated and two N-methyl groups (Table 1). The benzoic acid moiety was suggested by HMBC correlations from H-3 ($\delta_{\rm H}$ 8.10) to C-1 ($\delta_{\rm C}$ 172.6), C-4 ($\delta_{\rm C}$ 111.7), C-5 ($\delta_{\rm C}$ 157.6), C-7 $(\delta_{\rm C} 131.1)$, from H-6 $(\delta_{\rm H} 6.97)$ to C-2 $(\delta_{\rm C} 132.2)$, C-4, C-5 and from H-7 ($\delta_{\rm H}$ 7.83) to C-3 ($\delta_{\rm C}$ 135.3) and C-5 (Fig. 2). The chemical shift $(\delta_{\rm C} 111.7)$ of the quaternary carbon C-4 placed the bromine substituent at C-4. The substitution of C-5 was suggested by its chemical shift (δ_{C} 157.6) and also by the HMBC correlation from H-8 (δ_{H} 4.21) to C-5. Interpretation of the ¹H-¹H COSY correlations between H-8, H-9 and H10, revealed the propyl spin system C-8-C-9-C-10. The substitution of the amine moiety was determined by HMBC correlations from H-10 ($\delta_{\rm H}$ 3.21) to C-11, C-12 ($\delta_{\rm C}$ 43.9) and from H-11, H-12 ($\delta_{\rm H}$ 2.81) to C-10 ($\delta_{\rm C}$ 56.7), C-11 and C-12 (Fig. 2).

Psammaplysene E (2) was obtained as a colorless oil. The high resolution electrospray mass spectrum showed four isotopic peaks

^{*} Corresponding author. *E-mail address:* anne.bialecki@univ-reunion.fr (A. Gauvin-Bialecki).

amphimedonoic acid (1)

3,5-dibromo-4-methoxybenzoic acid (3)

psammaplysene E (2)

Fig. 1. Structures of isolated compounds 1-3.

 Table 1

 ¹H and ¹³C NMR data for amphimedonoic acid (1), psammaplysene E (2) and 3,5-dibromo-4-methoxybenzoic acid (3) (¹H 500 MHz, ¹³C 125 MHz, CD₃OD).

Position	1		2		3	
	δ_{C}	$\delta_{\rm H}$ (J in Hz)	δ_{C}	$\delta_{\rm H}$ (J in Hz)	δ_{C}	$\delta_{\rm H}$ (J in Hz)
1	172.6	_	167.6	_	171.0	-
2	132.2	-	123.6	6.52 (1H, d, 15.7)	-	-
3	135.3	8.10 (1H, d, 1.9)	138.1	7.37 (1H, d, 15.7)	134.7	8.12 (1H, s)
4	111.7	_	135.1	_	118.0	-
5	157.6	_	132.8	7.79 (1H, s)	156.6	-
6	112.9	6.97 (1H, d, 8.5)	119.3	_	118.0	-
7	131.1	7.83 (1H, dd, 8.6, 2.0)	156.1	_	134.7	8.12 (1H, s)
8	67.2	4.21 (2H, t, 5.7)	119.3	_	60.8	3.87 (3H, s)
9	25.9	2.23 (2H, m)	132.8	7.79 (1H, s)	-	-
10	56.7	3.21 (2H, t, 7.4)	60.9	3.88 (3H, s)	-	-
11	43.9	2.81 (3H, s)	41.5	3.51 (2H, t, 7.1)	-	-
12	43.9	2.81 (3H, s)	34.9	2.82 (2H, t, 7.0)	-	-
13	-	_	139.9	_	-	-
14	-	_	134.2	7.50 (1H, s)	-	-
15	-	_	118.7	_	-	-
16	-	_	152.3	_	-	-
17	-	_	118.7	_	-	-
18	-	-	134.2	7.50 (1H, s)	-	-
19	-	_	71.6	4.07 (2H, t, 5.8)	-	-
20	-	_	27.4	2.15 (2H, m)	-	-
21	-	_	57.1	3.07 (2H, t, 7.3)	-	-
22	-	_	44.3	2.63 (3H, s)	-	-
23	-	-	44.3	2.63 (3H, s)	-	-

Fig. 3. Key ¹H-¹H COSY and ¹H-¹³C HMBC correlations for 2.

Fig. 2. Key ¹H-¹H COSY and ¹H-¹³C HMBC correlations for 1.

at *m*/*z* 694.8758, 696.8740, 698.8723, 700.8702, 702.8691 [M+H]⁺ in a 1:4:6:4:1 ratio, respectively, indicating the presence of two bromine atoms in the molecule. The HRESIMS allowed assignment of the molecular formula as $C_{23}H_{27}Br_4N_2O_3^+$ (calcd for $C_{23}H_{27}^{-79}Br_4$ -

N₂O₃⁺, 694.8750) requiring ten degrees of unsaturation. The ¹H and ¹³C NMR data of **2** displayed the resonances of a *trans*- α , β -unsaturated carbonyl group, two symmetrical 1,2,4,6-tetrasubstituted aromatic rings, five methylenes, one of which was oxygenated, two *N*-methyl groups and one *O*-methyl group (Table 1).

Download English Version:

https://daneshyari.com/en/article/5259034

Download Persian Version:

https://daneshyari.com/article/5259034

Daneshyari.com