Tetrahedron Letters 58 (2017) 2135-2139

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Enantioselective access to tetrahydropyrano[2,3-*c*]pyrazoles *via* an organocatalytic domino Michael-hydroalkoxylation reaction

^a Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
^b Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India

ARTICLE INFO

Article history: Received 6 March 2017 Revised 12 April 2017 Accepted 18 April 2017 Available online 19 April 2017

Keywords: Pyranopyrazoles Asymmetric Organocatalysis Michael Hydroalkoxylation

ABSTRACT

An asymmetric domino Michael-hydroalkoxylation reaction of $trans-\alpha$ -alkynyl-nitroolefins with *N*-arylpyrazolinones has been accomplished using a chiral bifunctional squaramide catalyst. Under the organocatalytic method, a broad range of tetrahydropyrano[2,3-c]pyrazoles with an exocyclic alkene at the C-6 position were prepared in high yields and excellent stereoselectivities. The presence of an exocyclic double bond and nitro group in the pyranopyrazoles provide a wide scope for further structural transformations.

© 2017 Elsevier Ltd. All rights reserved.

Pyranopyrazoles are ubiquitous motifs in numerous heterocyclic molecules with impressive biological activities;¹ selected examples are shown in Fig. 1. For instance, pyranopyrazol-6-one derivative **A** possesses analgesic and anti-inflammatory properties,² compound **B** enhances the AMPA receptor activity,³ and molecules of type **C** are known fungicides.⁴ In addition, several chiral pyrano-annulated pyrazoles exhibit a wide range of therapeutic properties including antimicrobial,⁵ antitubercular,⁶ antibacterial⁷ and human Chk1 kinase inhibitory properties.⁸

Due to their extensive medicinal relevance, pyrano-annulated pyrazole scaffolds featuring multiple stereogenic centers have emerged as appealing synthetic targets in recent years. As a consequence, a number of elegant strategies have been established to construct these skeletons. For example, one-pot syntheses of pyranopyrazoles have been reported employing pyrazolinones and α , β -unsaturated aldehydes/ketones through iminium catalysis.⁹ Similar structures have also been prepared *via* NHC organocatalysis.¹⁰ Tetrahydropyranopyrazoles (THPPs) with three consecutive stereogenic centers have been synthesized using electrophilic alkylidene pyrazolinones.¹¹ A few other organocatalytic methods reported for the synthesis of THPPs and dihydropyranopyrazoles (DHPPs) include Michael/Thorpe-Ziegler type reaction,¹² Michael/ hemiketalization,¹³ and formal [3+3] annulations.¹⁴

E-mail address: vinodks@iitk.ac.in (V.K. Singh).

Fig. 1. Selected examples of biologically important pyranopyrazoles. Recently, a sequential approach involving a combination of metal and organocatalysis for the synthesis of DHPPs has been described

by Enders and co-workers (Scheme 1).¹⁵ Although many efficient asymmetric methods to furnish pyrano-annulated pyrazoles and spyro-pyrazolinones¹⁶ have been achieved to date, domino reactions employing a bielectrophile αalkynyl-nitroolefin¹⁷ to enantioselectively construct THPPs remains unknown. As a part of our research interest in developing novel and facile methods to produce architecturally interesting and bioactive molecules,¹⁸ we became interested in the asymmetric synthesis of more versatile THPPs with an exocyclic alkene, an important functionality for further structural manipulation. It

Tetrahedror

^{*} Corresponding author at: Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India.

Scheme 1. Asymmetric synthesis of pyranopyrazoles.

was envisioned that an ambident nucleophilic pyrazolinone¹⁹ would undergo asymmetric Michael reaction with the α -alkynylnitroolefin in the presence of a bifunctional organocatalyst,²⁰ and re-aromatization of the pyrazolinone unit followed by *6-exo-dig* cyclization of the Michael intermediate thereafter would produce the THPP derivative (Scheme 1).

While our work was in progress, Tsai, Chen and co-workers disclosed a sequential approach for the synthesis of (*Z*)-2-methylenepyrans *via* allene formation/oxa-Michael/alkene isomerization reactions.²¹ Very recently, Xu and co-workers explored 1,3-enynes in an organocatalytic one-pot Friedel–Crafts alkylation/annula-

 Table 1

 Optimization of reaction conditions.^a

tion/nitro-Michael reaction for the synthesis of chroman derivatives.²² Herein, we report an efficient enantioselective synthesis of tetrahydropyrano[2,3-c]pyrazoles through a domino Michaelhydroalkoxylation reaction, using a cinchona derived squaramide organocatalyst.

At the outset, the reaction between $trans-\alpha$ -phenylethynylnitrostyrene **2a** and *N*-phenylpyrazolinone **3a** was examined in the presence of *Cinchonidine* **1a** (10 mol%) in toluene at 20 °C. We were delighted to observe the formation of desired pyrano-annulated pyrazole **4aa** (48% yield, 27% ee), predominantly as the *Z*-isomer through a Michael addition followed by *6-exo-dig* cyclization (Table 1, entry 1).

To optimize the domino reaction, several other *Cinchona* alkaloids and their derivatives were evaluated as bifunctional organocatalysts (Fig. 2). It was observed that thioureas **1e–g** improved the reaction yield to some extent (Table 1, entries 5–7). Gratifyingly, *Cinchona*-derived squaramides **1h** and **1i**, gave pyranopyrazole **4aa** in 70%, 68% yield and 88%, 82% ee, respectively (Entries 8 and 9). Thus, it was quite clear that catalysts with the squaramide unit (**1h–i**) were superior over the thioureas (**1e–g**) in terms of chemical yield as well as optical yield. Interestingly, cyclohexanediamine-derived squaramide **1j** also catalyzed the domino reaction to give the product in moderate yield with very good enantiopurity (86% ee). Among the examined catalysts, *Cinchonidine*-derived squaramide **1h** was the best in terms of chemical yields. Upon lowering the catalyst loading

Entry	1	Solvent	Time (h)	$Z:E^{\mathbf{b}}$	Yield ^c (%)	ee ^d (%)
1	1a	Toluene	36	9:1	48	27
2	1b	Toluene	36	9:1	40	20
3	1c	Toluene	36	9:1	44	23
4	1d	Toluene	36	9:1	42	15
5	1e	Toluene	24	16:1	60	16
6	1f	Toluene	24	15:1	56	10
7	1g	Toluene	24	16:1	58	20
8	1h	Toluene	16	25:1	70	88
9	1i	Toluene	16	25:1	68	82
10	1j	Toluene	16	15:1	66	86
11 ^e	1h	Toluene	40	20:1	65	88
12 ^f	1h	Toluene	40	15:1	52	88
13 ^g	1h	Toluene	36	15:1	46	88
14 ^h	1h	Toluene	36	12:1	23	87
15	1h	PhCF ₃	16	20:1	64	85
16	1h	CHCl ₃	14	25:1	69	93
17	1h	CH ₂ Cl ₂	14	25:1	72	96
18	1h	DCE	14	25:1	70	93
19	1h	CH ₃ CN	20	20:1	58	83
20	1h	THF	20	20:1	55	78
21 ⁱ	1h	CH_2Cl_2	14	>30:1	78	96

^a Reaction conditions: 2a (0.20 mmol), 3a (0.24 mmol), 1 (0.02 mmol), solvent (1 mL), 20 °C, unless specified.

^b Determined by ¹H NMR analysis of crude reaction mixture.

^c Isolated yield of **4aa** (*Z*-isomer).

^d Determined by chiral HPLC analysis.

^e 5 mol% catalyst **1h**.

^f 2 mol% catalyst **1h**.

 $^{\rm g}$ Reaction conducted at 10 °C.

^h Reaction conducted at 0 °C.

ⁱ Reaction conducted at 30 °C.

Download English Version:

https://daneshyari.com/en/article/5259276

Download Persian Version:

https://daneshyari.com/article/5259276

Daneshyari.com