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This paper discusses the problem of segmenting foreground objects precisely in surveillance video
images when foreground moving objects and the still backgrounds have the similar color parts. Moti-
vated by the studies in color constancy, the notion of color invariants is introduced to realize integrated
segmentation in color similar situations. Color invariants, which are derived from a physical model, are
used as descriptors of image. Then a simple background subtraction method using the color invariants is
performed to examine the effectiveness of color invariants in color similar situations. The experimental
results demonstrated that the color invariants based method performed well in various situations of color
similarity and also was robust to environmental illumination change. Moreover, the color invariants
based method achieved higher accuracy and efficiency of background subtraction compared with other
existing algorithms in practical real-time surveillance video images of indoor environments.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Background subtraction is a fundamental issue of computer vi-
sion, which aims to segment foreground moving objects from
images by parameters or descriptors so that the pixels residing in
the foreground or background can be effectively differentiated. In
some specific applications, background subtraction is demanded
to exactly segment the foreground moving object from the back-
ground without apertures or discontinuities in segmentation.
However in many common situations (e.g., the similar color of
foreground moving objects and background, the abrupt change of
illumination intensity), it is unable to realize the integrated object
segmentation with background subtraction algorithm [1,2].

In order to overcome the problems of apertures and discontinu-
ities in segmentation, researchers [3-6] tried to improve the
robustness of background subtraction algorithm for the illumina-
tion changes. Nevertheless, few researches worked on the aper-
tures and discontinuities from the view of color model used by
images [7]. Intuitively, the color discriminative ability of back-
ground algorithm is basically related to the way of representing
colors in the image. RGB, the default color model generated by
the surveillance camera, is an additive color model, which is
formed by adding three basic colors with different proportions to
reproduce a band of color arrays to represent colors in image. Since
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the formation of RGB color model is simple, it is widely used in the
electronic devices [8]. Hence, most background subtraction algo-
rithms used in the intelligence surveillance systems are directly
processing images based on RGB color model, such as the GMM
[9], Codebook [10], and etc. The GMM algorithm is one of the most
prevalent background subtraction algorithms. Nonetheless, exper-
iments proved that the GMM algorithm did not perform well when
there were shadows; i.e., shadows were usually viewed as fore-
ground objects by the GMM algorithm. This indicates the fact that
the GMM algorithm is sensitive to the illumination intensity
change. Funt et al. [12] confirmed in his research that the normal-
ization of RGB values could eliminate the effect of illumination
intensity. However, once the RGB value is normalized, images’ col-
or values in the dark area become unstable [13]. The codebook
algorithm uses the color distance to describe colors in order to
make the best use of illumination intensity [10]. Although, theoret-
ically, this method makes the algorithm independent of abrupt
illumination change and discriminative to color similarity, it works
poorly in practice [14].

To get the full use of color information, the HSI color model is
proposed, which is more intuitive and perceptual with human eyes
compared with the RGB color model. In HSI color model, the inten-
sity and chroma information are defined separately, this is better
to cope with the color similarity as well as the illumination change.
Unfortunately, the HSI color model is an unstable color model; i.e.
when the color saturation is low, the H value changes randomly. As
a result, HSI color model is unsuitable to the background subtrac-
tion algorithm.

Luke et al. [11] proposed the YCrCbCg and HSv color models to
improve the stability of the illumination change. The algorithm
based on the YCrCbCg and HSv color models works well for various
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kinds of indoor environments, but it still unable to process the im-
age under the color similarity situation.

The color models used in the above mentioned algorithms de-
scribe image colors only with color spectral information, but with-
out consideration of color spatial structure in image. The color of
an object is not only a function of surface reflectance, but also a
function of both the illumination spectrum and the sensing device
[15]. Thus, it is necessary to consider the formation of color image
as the combination of the image surface reflectance, ambient illu-
mination and the photographing device. Therefore, it is assumed
that a color model which integrates the color spectral information
and spatial configuration will be more precise to describe colors in
image.

Geusebroek et al. [16,18] analyzed that the formation of colors
in image was an integrated process of spectrum energy distribu-
tion in the spatial dimension at certain spectral scale-space and
spatial scale-space. Then the Kubelka-Munk theory was adopted
to model the formation of the color in term of physical basis, which
integrated the color spectral information and spatial content to de-
scribe color [17]. The color invariants were derived from the Kub-
elka-Munk theoretic model, which were invariable to illumination
changes and had excellent color discriminative capability in
theory.

In this paper, the color invariants are applied as descriptor for
background subtraction method. The indoor environments are se-
lected as the tentative environments. A background subtraction
method based on a novel descriptor consist of color invariants is
proposed. Experiments and results demonstrate that the proposed
method realizes precise background-foreground segmentation in
different color similarity situations and it has the robustness to
illumination change. The method also achieves a high true-positive
segmentation accuracy and runtime efficiency.

The rest of this paper is organized as follows: Section 2 intro-
duces the color invariant descriptors. In Section 3, the framework
of background subtraction method based on color invariants is de-
scribed. Section 4 presents the experiments and the results that
examine the foreground segmenting capability and efficiency of
the proposed method in different color similarity situations and
its robustness to illumination.

2. Color invariant descriptors

Color is an effective cue to discriminate objects in images. How-
ever, the general color models only use the color spectral informa-
tion and its color representation for color spectrum is not as
sophisticated as the color reflected light spectrum for human eyes.
Therefore, in order to describe colors in a more discriminatively
way, it is necessary not only to use the color spectral energy distri-
bution coding color information, but also the spatial configuration
of color [18]. The Kubelka-Munk theory as defined in Eq. (1) is
established based on a physical model in term of spectral and spa-
tial dimension of color [16]. Parameters with properties indepen-
dent of illumination intensity and viewpoint are defined as the
color invariants.

E(2,%) = e(7,%)(1 — p;(¥))°Re (2, %) + (2, %) py(X) (1)

where X denotes the position in the image plane, /. denotes the
wavelength, e(2,X) denotes the illumination spectrum, p;(X) de-
notes the Fresnel reflectance at X, and R, (/,X) denotes the material
reflectivity. The set of color invariants derives from the Kubelka-
Munk theory are shown in Table 1. In Table 1, C.I. is short for color
invariant and the corresponding column lists the names of the de-
fined color invariants. The second column is the definitions of each
color invariant. The third and the forth columns give out the condi-
tions and physical models from which the color invariants derived.

Table 1
Definition, condition and physical model formula of color invariants.

C.I. Definition Conditions Physical model formula

E(4,%) = i){py (%) + (1 = pp(x))*Rec (1)}

H E Equal energy
but uneven
illumination
Equal energy E(4,x) = iR (4,X)
but uneven
illumination
on matte, dull
surface and
planar objects
Equal energy
but uneven
illumination
on matte, dull
surface
Uniform
object
Uneven E = e(2)i(X)Rx (4,X)
illumination

E(J,%) = i(X)Roo (1, X)

U BEERE E=e(2,0){p + (1= py)*Ruc(4)}

N ExE-EE
P

The color invariants list in Table 1 are defined in an ideal phys-
ical model, i.e. the color invariants are defined in the given dimen-
sional spectrum at an infinitesimal small spatial neighborhood.
However, in practice, the spatial-spectral energy distribution is
measurable only at a certain spatial extend and a certain band-
width. According to Florack and Munk [17], the Gaussian function
and its derivatives can be used as general probes for the measure-
ment of spatial-spectral differential quotients. Therefore, in order
to compute the color invariants in practice, Gaussian color model
is adopted as the image color describing model. Gaussian color
model is a human perceptual oriented color model which conveys
color in term of spectral and spatial structure [18]. Hence, the spec-
tral and spatial parameters in the definitions of color invariants can
be calculated in the Gaussian color model.

The spectral parameters of color in Gaussian color model: Let
E(7) be the energy distribution of the incident light as defined in
Eq. (1), 4 denotes wavelength. The observed spectral energy distri-
bution E(i) in Gaussian color model may be approximated by a
Taylor expansion at o with scale o;;

E%(3) = E?% 4 JE% 4 %Azﬁjﬁ'“* T 2)

where E’09 Ej:j""”' and Ejﬂ'“* are the incident light spectral energy
distribution parameter with Gaussian aperture weighted at i, with
scale ;.

Since the subspace spanned by the human visual system is of
dimension 3, the third or higher order Taylor expansion of incident
light spectral energy distribution is unobservable by human eyes
[18]. Hence, the second order truncated Taylor expansion is suffi-
cient to approximate the spectral energy distribution of color for
human visual system. For color image, E/0% Ef{"'”" and Ejﬂ"’" consist
of the spectral parameters of Gaussian color model at /, with scale
g;.

The spatial parameters of color in Gaussian color model: The
energy distribution of incident light at x direction can be expressed
as Taylor expansion:

EO,x)=E + <E>TEX

where

E,i(2X) = E(4,X) * Gy, (4. X0, 0y) (4)

Here, G, (,X; 0;,0%) is the Gaussian spatial-spectral probe.



Download English Version:

https://daneshyari.com/en/article/525944

Download Persian Version:

https://daneshyari.com/article/525944

Daneshyari.com


https://daneshyari.com/en/article/525944
https://daneshyari.com/article/525944
https://daneshyari.com/

