Accepted Manuscript

Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide

Yan Huang, Changyu Zhang, Zhen Xi, Long Yi

PII: DOI: Reference:	S0040-4039(16)30127-7 http://dx.doi.org/10.1016/j.tetlet.2016.02.017 TETL 47290
To appear in:	Tetrahedron Letters
Received Date:	22 November 2015
Revised Date:	30 January 2016
Accepted Date:	3 February 2016

Please cite this article as: Huang, Y., Zhang, C., Xi, Z., Yi, L., Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide, *Tetrahedron Letters* (2016), doi: http://dx.doi.org/10.1016/j.tetlet.2016.02.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters

journal homepage: www.elsevier.com

Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide

Yan Huang^{a,†}, Changyu Zhang^{a,†}, Zhen Xi^{b,*}, Long Yi^{a,*}

^aState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: <u>vilong@mail.buct.edu.cn</u> ^bState Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China. E-mail: <u>zhenxi@nankai.edu.cn</u> [†] The authors pay equal contributions to this work.

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Bioimaging Fluorescence probe Hydrogen sulfide NBD amine Thiolysis

Introduction

Hydrogen sulfide (H₂S) is an important endogenous signalling molecule with significantly biological functions.¹ The production of endogenous H₂S in different organs and tissues has been majorly attributed to three distinctive enzymatical pathways including cystathionine β -synthase (CBS), cystathionine γ -lyase (CSE) and 3-mercaptopyruvate sulfur transferase (3-MPST) coupling with cysteine aminotransferase (CAT).² It has been proved that abnormal endogenous level of H₂S relates to numerous human diseases, including symptoms of Alzheimer's disease, Down syndrome, diabetes and liver cirrhosis.³ Moreover, H₂S is proposed to play important roles in mediating a wide range of physiological processes, such as neurotransmission, vasodilation, inflammation, oxygen sensing, etc.⁴ Although those studies indicated that numerous physiological and pathological processes were linked to levels of H₂S, the molecular mechanisms dictating how H₂S influences cellar signaling and interrelated biological events were insufficient understood. Therefore, it presents significant research value to develop efficient methods for detection of H₂S in biological systems.

Traditionally, the main methods for H_2S detection are colorimetry, electrochemical assay, gas chromatography and sulfide precipitation.⁵ However, recent research indicated that fluorescent methods with excellent sensitivity and selectivity were highly desirable for *in situ* and real-time visualization of H_2S in living biological systems.⁶⁻¹¹ These H_2S probes are mostly based on specific H_2S -induced reactions, including reductionbased probes,⁶⁻⁸ metal sulfide precipitation-based probes⁹ and nucleophile-based probes.¹⁰ We have been interested in the biodetection of H_2S^{11} and biothiols¹² for some time. In our previous work, the thiolysis of the NBD (7-nitro-1,2,3-

Hydrogen sulfide (H₂S) is an important endogenous signaling molecule with a variety of biological functions. To detect H₂S in living biological systems, herein we developed a new fluorescent probe for highly sensitive and selective sensing of H₂S in cells. The probe is based on coumarin-triazole as the fluorophore and thiolysis of the NBD (7-nitro-1,2,3-benzoxadiazole) amine as the receptor. Bioimaging experiments indicated that this probe could be used to monitor H₂O₂-induced H₂S biosynthesis in yeast cells. Our results show that such thiolysis of the NBD amine can be used for development of fluorescent H₂S probes.

2009 Elsevier Ltd. All rights reserved.

benzoxadiazole) amine was explored for development of a FRET-based H₂S probe **1** (Scheme 1),^{11a} which displayed good selectivity for H₂S over biothiols or SO₃²⁻. However, Roubinet¹³ et al. recently reported another NBD-amine-based probe **2** (Scheme 1) which 1) possessed no selectivity for S²⁻ and SO₃²⁻ and 2) could only react with Na₂S, but not NaHS in their tests.¹³ To further investigate such thiolysis of the NBD amine for development of fluorescent H₂S probes, herein we reported the synthesis and characterizations of a new NBD-based probe **3**, which could be used to detect H₂S selectively and to monitor the H₂O₂-induced H₂S biosynthesis in yeast cells.

Scheme 1. Chemical structures of NBD-based fluorescent probes 1-3 and the reaction of 3 and H_2S to produce 4.

Herein, we developed a new NBD-based fluorescent probe 3 based on click reaction of alkyne-containing NBD 7 and

Download English Version:

https://daneshyari.com/en/article/5259640

Download Persian Version:

https://daneshyari.com/article/5259640

Daneshyari.com