Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Induced production of a new dipeptide with a disulfide bridge by longterm fermentation of marine-derived *Trichoderma* cf. *brevicompactum*

Hiroyuki Yamazaki ^{a,*}, Henki Rotinsulu ^{b,c}, Ohgi Takahashi ^a, Ryota Kirikoshi ^a, Michio Namikoshi ^a

- ^a Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
- ^b Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Kampus Bahu, Manado 95115, Indonesia
- ^c Research Institute, University of Pembangunan Indonesia, Bahu, Manado 95115, Indonesia

ARTICLE INFO

Article history:
Received 14 June 2016
Revised 2 November 2016
Accepted 7 November 2016
Available online 9 November 2016

Keywords: Long-term fermentation Marine-derived fungus Trichoderma cf. brevicompactum Dithioaspergillazine A

ABSTRACT

The marine-derived fungus *Trichoderma* sp. TPU199 (cf. *T. brevicompactum*), originally isolated from a Palauan red alga, was found to produce unprecedented epipolythiodiketopiperazines, such as gliovirin and pretrichodermamide A. Long-term static fermentation of the strain induced the production of a new dipeptide, dithioaspergillazine A (1), together with aspergillazine A (2) and three anthraquinones (3–5). The structure of 1 was identified as a modified dipeptide possessing a disulfide bridge based on spectroscopic data for 1 and comparisons with those for 2. On the other hand, long-term agitating fermentation of the strain led to the production of the known bisabolane-type sesquiterpene, (+)-12-hydroxysydonic acid (6), which formed the cyclic derivative 7 during HPLC purification under acidic conditions. Compound 1 exhibited cytotoxicity against HCT-15 and Jurkat cells with IC_{50} values of 13 and 1.3 μ M, respectively. Compound 2 did not affect the proliferation of these cancer cells up to a concentration of 22 μ M.

 $\ensuremath{\text{@}}$ 2016 Elsevier Ltd. All rights reserved.

Microorganisms, such as fungi and actinomycetes, are well-known producers of various bioactive metabolites, ^{1,2} and fungal metabolites have provided a wide variety of lead compounds for clinical applications. ^{1,3} Recent studies involving genetic analyses revealed that fungi have a number of biosynthetic genes for secondary metabolites; however, most of them remain dormant under standard fermentation conditions. ⁴ Therefore, the activation of these silent genes in fungi has attracted significant attention, and several attempts have been made to obtain novel and useful metabolites. ⁴

During our investigation on the culture conditions of microorganisms, marine-derived *Trichoderma* sp. TPU199 (cf. *T. brevicompactum*) collected in Palau was found to produce the unique metabolites gliovirin,⁵ pretrichodermamide A,⁶ and trichodermamide A⁷ under ordinary culture conditions as well as the halogenated epidithiodiketopiperazines DC1149B,⁸ DC1149B,⁸ and iododithiobrevamide⁹ in freshwater media supplemented with sodium halides. Moreover, the strain created the new trithioderivative of DC1149B, chlorotrithiobrevamide, in natural seawater medium with a trace amount of DMSO.¹⁰

Further culture experiments on strain TPU199 revealed that long-term fermentation induced the production of the new modi-

fied dipeptide, dithioaspergillazine A (1), under static conditions together with four known compounds: aspergillazine A (2), 11 emodine (3), 12 pachybasin (4), 12 and chrysophanol (5). 12 Compound 1 possessed a disulfide bridge instead of the sulfide linkage in 2. The known bisabolane sesquiterpene, (+)-12-hydroxysydonic acid (6), 13 was produced under agitation conditions. Compound 7 was obtained as an artifact from 6 during preparative HPLC using TFA. We herein describe the fermentation, isolation, structural elucidation, and biological activities of the metabolites obtained.

Trichoderma sp. (cf. *T. brevicompactum*) TPU199 was isolated from a red algae collected in Palau and identified from its ITS1 rDNA sequence in a BLAST search.⁹

Strain TPU199 was fermented under four different conditions (A–D), ¹⁴ and the HPLC profiles of culture broth extracts were shown in Fig. S1. Gliovirin (8), pretrichodermamide A (9), and trichodermamide A (10) were obtained under static conditions for 2 weeks (A) and under agitation for 1 week (C) in freshwater medium. Static fermentation for 5 weeks (B) in freshwater medium induced the production of compounds 1–5, whereas long-term agitation for 5 weeks (D) led to the production of compound 6 (Fig. S1).

Compounds **1–5** were isolated from the culture broth,¹⁵ and compounds **2–5** were identified as aspergillazine A (**2**),¹¹ emodine (**3**),¹² pachybasin (**4**),¹² and chrysophanol (**5**)¹² by comparing their spectroscopic data with reported values (Fig. 1).

^{*} Corresponding author.

E-mail address: yamazaki@tohoku-mpu.ac.jp (H. Yamazaki).

Fig. 1. Structures of compounds 1-11.

Table 1 13 C (100 MHz) and 1 H (400 MHz) NMR data for 1 and 2 (in CD $_3$ OD).

C#	1		2	
	δ_{C}	δ _H , mult. (<i>J</i> in Hz)	δ_{C}	δ _H , mult. (J in Hz)
1	163.5		162.0	
2	73.1		77.3	
3a	41.1	2.33, d (14.0)	50.9	2.37, d (11.7)
3b		3.33, d (14.0)		3.13, d (11.7)
4	65.9		76.2	
5	52.7	4.00, brt (2.9)	47.7	4.13, d (4.9)
6	130.1	6.02 dd (10.1, 3.4)	126.1	5.92, dd (10.0, 4.9)
7	130.7	6.18, dddd (10.1, 5.0, 2.4, 1.0)	128.3	6.05, dd (10.0, 5.0)
8	65	4.44, dd (5.0, 1.9)	65.3	4.34, d (5.0)
9	83.9	4.06, brs	81.8	4.20, brs
1'	159.3		158.3	
2′	121.2		121.4	
3′	118.9	6.99, s	119.2	6.94, s
4'	115.4		116	
5'	129.1	7.05, d (9.2)	129.5	7.00, d (9.0)
6′	105.9	6.64, d (9.2)	105.2	6.58, d (9.0)
7′	156.0		156.1	
7'-OCH ₃	56.5	3.87, s	56.4	3.87, s
8′	138.1		138.5	
8'-OCH ₃	61.2	3.80, s	61.1	3.80, s
9′	149.1	•	149.1	•

Fig. 2. ¹H-¹H COSY and key HMBC correlations for compound 1.

3a) NOE

Fig. 3. Key NOESY correlations on the energy-minimized conformer of 1.

The molecular formula of **1** was deduced as $C_{20}H_{20}N_2O_8S_2$ from HRFABMS (m/z 481.0738 [M+H]⁺, Δ -0.1 mmu) and NMR data. The ¹H and ¹³C NMR data (Table 1) and physico-chemical properties

(including UV and IR spectra) of $\mathbf{1}$ were very similar to those of aspergillazine A ($\mathbf{2}$). The molecular weight (formula) of $\mathbf{1}$ was 32 Da (S) larger than that of $\mathbf{2}$. Therefore, the structure of $\mathbf{1}$ was presumed to be a dithio-derivative of $\mathbf{2}$, and an analysis of 2D

Download English Version:

https://daneshyari.com/en/article/5260218

Download Persian Version:

https://daneshyari.com/article/5260218

<u>Daneshyari.com</u>