Accepted Manuscript

Recent developments in total syntheses of aculeatins

Liyan Song, Hongliang Yao, Yangjie Dai, Mengwei Wu, Rongbiao Tong

PII: S0040-4039(16)31040-1

DOI: http://dx.doi.org/10.1016/j.tetlet.2016.08.041

Reference: TETL 48012

To appear in: Tetrahedron Letters

Received Date: 24 June 2016 Revised Date: 8 August 2016 Accepted Date: 14 August 2016

Please cite this article as: Song, L., Yao, H., Dai, Y., Wu, M., Tong, R., Recent developments in total syntheses of aculeatins, *Tetrahedron Letters* (2016), doi: http://dx.doi.org/10.1016/j.tetlet.2016.08.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tetrahedron Letters

journal homepage: www.elsevier.com

Recent developments in total syntheses of aculeatins

Liyan Song^a,* Hongliang Yao^b, Yangjie Dai^a, Mengwei Wu^a and Rongbiao Tong^b*

^aFujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China ^bDepartment of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form

Accepted

Available online

Keywords:
Aculeatin
Total synthesis
Dehydrative spiroketalization
Double oxa-Michael cyclization
Phenol oxidative dearomatization

Aculeatins, a growing family of natural products with potent antimalarial and/or anticancer activities, have been the targets for more than 20 total syntheses since the first members (aculeatins A-C) reported in 2000 partially due to their unprecedented and fascinating tricyclic 1,7-dioxadispiro[5.1.5.2]pentadecane (1,7-DODSP) skeleton. This Digest distills the two key strategies (POD/DSK and POD/DOMC) employed in all these syntheses for the construction of the 1,7-DODSP core and summarizes these total syntheses of aculeatins with the focus on different methods for the diastereo- and enantioselective preparation of the essential (5-keto-)1,3-diol substrates.

2009 Elsevier Ltd. All rights reserved.

1. Introduction of aculeatins

Aculeatins A–D (Figure 1) were isolated by Heilmann's group $^{1-2}$ from rhizomes of the plant *Amomum aculeatum*, a widely used folk herb medicine against fever and malaria by the indigenous people of Papua New Guinea. In 2007, the structurally related aculeatols A-D ($\Delta^{8.9}$ -alkene hydration of the corresponding aculeatins) along with aculeatins A and B were isolated by Kinghorn's group 3 from the hexane and chloroform extracts of the leaves and rachis of *Amomum aculeatum* that collected in Indonesia, which yielded congenerous aculeatins E and F and aculeatol E. 4

Preliminary biological studies have shown that aculeatins A-D displayed potent *in vitro* antiprotozoal activity (IC_{50} 0.18-0.49 μ M) and moderate to high cytotoxicity (IC_{50} 0.38-1.70 μ M). Noteworthy is that aculeatin A is three-fold active (antiprotozoal and cytotoxic) than its spiroisomer aculeatin B. Additionally, aculeatin D was found to exhibit moderate to strong antimicrobial activity against *Bacillus cereus*, *Escherichia coli* and *Staphylococcus epidermidis*. However, aculeatin A was deemed to be inactive against P388 lymphocytic leukemia and human A2780S ovarian carcinoma *in vivo* models as reported by Kinghorn's group.⁴

Structurally, aculeatins A-F and aculeatols A-E represent a novel type of natural products with a fascinating and unprecedented 1,7-dioxadispiro[5.1.5.2]pentadecane skeleton (1,7-DODSP, *cf.*, dispiroketal cyclohexadienone). This core structure might hint a common biosynthetic pathway, which could inspire the development of a unified synthetic (biomimetic)

strategy amenable to all aculeatins and aculeatols. Within the family, aculeatols were the $\Delta^{8,9}$ -double bond hydration products of the aculeatins. Additional structure-differentiating features include the stereochemistry of C8, C6 and C4 and the length of the side chain (except aculeatin C).

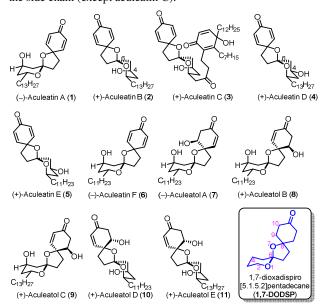


Figure 1. Structures of aculeatins and aculeatols.

Interestingly, the stereochemical differences were found to influence their biological potency: aculeatin A was three times

^{*} Corresponding author e-mail: songliyan@fafu.edu.cn

^{*} Corresponding author e-mail: rtong@ust.hk

Download English Version:

https://daneshyari.com/en/article/5260427

Download Persian Version:

https://daneshyari.com/article/5260427

Daneshyari.com