ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Al(OTf)₃-catalyzed S_N2' substitution of the β -hydroxy group in Morita-Baylis-Hillman adducts with indoles

Mukut Gohain, Shunhuang Lin, Barend C. B. Bezuidenhoudt *

Department of Chemistry, University of the Free Sate, PO Box 339, Bloemfontein, South Africa

ARTICLE INFO

Article history: Received 12 December 2014 Revised 19 March 2015 Accepted 31 March 2015 Available online 4 April 2015

Keywords: Aluminum triflate β-Hydroxyketone Substitution Indole

ABSTRACT

The Al(OTf)₃-catalyzed S_N2' -type substitution of the β -hydroxy group in Morita-Baylis-Hillman adducts with indoles is reported. The reaction proceeded efficiently with aryl-, heteroaryl-, aliphatic- and alicyclic-containing β -hydroxyketones and a variety of substituted indoles.

© 2015 Elsevier Ltd. All rights reserved.

Indoles constitute a class of intensely studied heterocycles, members of which serve as potential scaffolds for many alkaloids and pharmaceutically important substances. A plethora of methods are available for the preparation of diversely functionalized indoles, sepecially 3-substituted indoles due to their significant biological activities. A 3-Substituted indoles are also important building blocks in the synthesis of various biologically active molecules. Consequently, there is continued interest in the development of improved methods for the synthesis of 3-substituted indoles.

In our recent literature survey on the preparation of 3-substituted indoles, it was found that several reports described the direct nucleophilic substitution of the hydroxy group in propargylic, allylic, and benzylic alcohols with indoles, 6 but only a few methods have so far appeared for the preparation of the same skeleton based on an S_N2' substitution approach. $^{7.8}$

Very recently, Yao and co-workers^{7b,8} disclosed an S_N2' nucleophilic substitution reaction between hydroxyketones **2** derived from the Morita–Baylis–Hillman reaction (MBH) and indole **1**, in order to prepare diversely functionalized C3-alkylated indole derivatives. The products from these reactions were utilized to prepare important molecules of biological significance, but catalyst loadings were very high, that is, 30% of I_2 , while the reactions also required prolonged reaction times. Moreover, a lack of versatility with regard to the functional groups on both the alcohols and indoles was observed. Thus,

efficient and high yielding methods for the S_N2' substitution of the hydroxy group in Baylis–Hillman (BH) 9 derived ketones with indoles in order to prepare interesting C-3 alkylated indoles are still required.

Despite being more affordable, and taking into consideration its unique Lewis acidity and stability in various solvents and in the presence of moisture, 10 Al(OTf) $_3$ has not been explored as extensively as other metal triflates. 11 Therefore, in continuation of our ongoing research 12 on developing efficient methodologies by applying Al(OTf) $_3$ as the catalyst, we herein disclose that Al(OTf) $_3$ can be used as an efficient catalyst for the S_N2' -type nucleophilic substitution of the hydroxy group in BH derived β -hydroxyketones to prepare interesting and diverse functionalized C3-substituted indoles (Scheme 1).

For optimization of the reaction conditions, initial experiments were carried out between indole ${\bf 1}$ (R^1 , R^2 , R^3 = H) and the

$$R^1$$
 R^3
 R^4
 R^3
 R^4

Scheme 1. $S_N 2'$ -type substitution of the β-hydroxy group in Morita–Baylis–Hillman adducts with indoles. R^1 = H, Cl, OMe; R^2 = H, Me; R^3 = H, Me, Ph; R^4 = H, aryl, heteroaryl, benzyl, aliphatic alkyl, cycloalkyl.

^{*} Corresponding author. Tel.: +27 51 401 9021; fax: +27 51 401 7295. E-mail address: bezuidbc@ufs.ac.za (B.C.B. Bezuidenhoudt).

Table 1 Evaluation of Brønsted and Lewis acid catalysts and optimization of the $Al(OTf)_3$ conditions for the alkylation of indole 1a with hydroxyketone 2a

Entry	Catalyst (mol %)	Temp (°C)	Time (h)	Yield (%) ^a
1	PTSA (5)	80	1.5	66 ^b
2	TfOH (5)	80	1.5	65 ^b
3	FeCl ₃ (5)	80	3	70
4	$Sc(OTf)_3(5)$	80	1.5	88
5	$Yb(OTf)_3(5)$	80	1.5	83
6	$Cu(OTf)_2$ (5)	80	1.5	85
7	$Al(OTf)_3$ (5)	80	1.5	89
8	$Al(OTf)_3$ (5)	rt	12	86
9	p-TsOH (2.5)	80	2	75
10	$Sc(OTf)_3$ (2.5)	80	2	80 ^c
11	$Cu(OTf)_2$ (2.5)	80	2	70 [€]
12	$Al(OTf)_3$ (2.5)	80	2	80
13	$Al(OTf)_3$ (2.5)	70	2	94
14	$Al(OTf)_3(1)$	70	2.2	94
15	$Al(OTf)_3 (0.5)$	70	2.2	80 ^c
16	=	70	24	_

- ^a Isolated yield of **3aa** after column chromatography.
- ^b Impurities were observed, probably due to side reactions.
- ^c Starting material was not completely consumed as observed by TLC [EtOAchexane (2:8)] and GC-MS analysis.

unsaturated β -hydroxyketone **2** (R⁴ = Ph) in various solvents such as EtOH, THF, CH₂Cl₂, CH₃CN, etc., with Al(OTf)₃ (5 mol %). Acetonitrile (CH₃CN) was found to be the solvent of choice in terms

of conversion and duration of the reaction. Although the reaction proceeded slowly at room temperature (12 h), the rate increased significantly at 80 °C and an excellent yield (89%) of the corresponding product $\bf 3$ was obtained in a short period of time (ca. 1.5 h). Although the reaction also proceeded under solventless conditions, unexpected impurities that had a negative impact on the yield (as monitored by TLC and GC–MS) were found.

In order to evaluate the catalytic activity of various acid catalysts commonly used in direct nucleophilic substitution reactions,⁶ triflic acid (TfOH), p-toluenesulfonic acid (p-TsOH), FeCl₃, Sc(OTf)₃, Yb(OTf)₃, and Cu(OTf)₂, were also tested in the substitution of the hydroxy function in β -hydroxyketone **2a** (R^4 = Ph) with indole **1a** (Table 1). While it was found that the Al(OTf)₃-catalyzed reactions proceeded well even at concentrations as low as 1 mol % (entry 14), 2.5 mol % or higher catalyst concentrations were required for completion of the reactions with the other catalysts tested (entries 1–6 and 9-11). Moreover, most of the other catalysts gave yields that were considerably lower than those obtained with Al(OTf)₃, probably due to decomposition of the product, the acid-sensitive hydroxyketone 2, or side reactions during the course of the reaction. Decreasing the Al(OTf)₃ catalyst concentration from 5 to 0.5 mol % led to extended reaction times, which also had a negative effect on the yields (entries 7 and 12–15). As expected, no reaction was observed in the absence of any catalyst (entry 16). It was therefore decided to study this reaction using 1 mol % of Al(OTf)₃ in CH₃CN at 70 °C.

To investigate the scope and general applicability of the reaction, indoles with electron-withdrawing (**1c**, **Table 2**, entry 3) and electron-donating groups (**1b**, **Table 2**, entry 2) on the benzene ring were reacted with β -hydroxyketone **2a** to give the desired 3-substituted indole products (**3ca** and **3ba**, respectively). The reaction of *N*-methyl- (**1d**), 2-methyl- (**1e**), and 1,2-dimethyl- (**1f**) substituted indoles with β -hydroxyketone **2a** were successful and led to the expected 3-substituted indoles in excellent yields

Table 2 Reactions between indoles 1 and β -hydroxyketones 2

$$R^1$$
 R^3
 R^3
 R^4
 R^2
 R^3
 R^4
 R^4
 R^3
 R^4
 R^3
 R^4

Entry	Indole	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Hydroxyketone	R^4	Time (min) ^a	Product ^b	Yield (%) ^c
1	1a	Н	Н	Н	2a	Ph	140	3aa ^{7b}	93
2	1b	OMe	Н	Н	2a	Ph	130	3ba	90
3	1c	Cl	Н	Н	2a	Ph	150	3ca	92
4	1d	Н	Me	Н	2a	Ph	100	3da	93
5	1e	Н	Н	Me	2a	Ph	90	3ea	93
6	1f	Н	Me	Me	2a	Ph	120	3fa	92
7	1g	Н	Н	Ph	2a	Ph	130	3ga	90
8	1a	Н	Н	Н	2b	$4-ClC_6H_4$	120	3ab	93
9	1a	Н	Н	Н	2c	4-MeOC ₆ H ₄	140	Зас	70
10	1a	Н	Н	Н	2d	$4-O_2NC_6H_4$	130	3ad	92
11	1a	Н	Н	Н	2e	2-thienyl	150	3ae	94
12	1a	Н	Н	Н	2f	2-furyl	160	3af	78
13	1a	Н	Н	Н	2g	CH ₂ Ph	90	3ag	85
14	1a	Н	Н	Н	2h	Me	90	3ah	78
15	1a	Н	Н	Н	2i	n-Pr	120	3ai	75
16	1a	Н	Н	Н	2j	c-C ₆ H ₁₁	110	3aj	90
17	1a	Н	Н	Н	2k	Н	120	3ak1 ¹⁴ +3ak2 ¹³	40+50 ^d

- ^a Time needed for complete consumption of **1** as determined by TLC and GC-MS analysis.
- ^b Literature references to known compounds are provided.
- ^c Isolated yield.
- d Bisindolyl ketone 3ak2.

Download English Version:

https://daneshyari.com/en/article/5260536

Download Persian Version:

https://daneshyari.com/article/5260536

Daneshyari.com