Accepted Manuscript

Synthesis of Ladder-type Graphene Ribbon Oligomers from Pyrene Units

Feng Liu, Xiaoxiao Shen, Yonggang Wu, Libin Bai, Hongchi Zhao, Xinwu Ba

PII: S0040-4039(16)30975-3

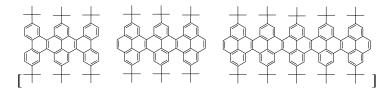
DOI: http://dx.doi.org/10.1016/j.tetlet.2016.07.106

Reference: TETL 47968

To appear in: Tetrahedron Letters

Received Date: 12 June 2016 Revised Date: 27 July 2016 Accepted Date: 30 July 2016

Please cite this article as: Liu, F., Shen, X., Wu, Y., Bai, L., Zhao, H., Ba, X., Synthesis of Ladder-type Graphene Ribbon Oligomers from Pyrene Units, *Tetrahedron Letters* (2016), doi: http://dx.doi.org/10.1016/j.tetlet. 2016.07.106


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis of Ladder-type Graphene Ribbon Oligomers from Pyrene Units

Feng Liu, Xiaoxiao Shen, Yonggang Wu*, LibinBai*, Hongchi Zhao, Xinwu Ba

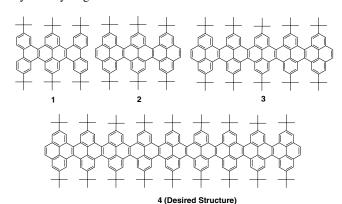
College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China *Supporting Information*

ARTICLE INFO

ABSTRACT

A series of ladder-type graphene ribbon oligomers have been synthesized through DDQ/acid-mediated oxidative cyclization. The oligomers present a bright blue light emission, and the new oligomers were clearly characterized by NMR and MALDI-TOF.

Keyword: Graphene; Pyrene; Ladder-type


Introduction

Polycyclic aromatic hydrocarbons (PAHs) as well defined "piece of graphite" ¹⁻⁴ have been exploited in various organic electronic devices including field-effect transistors, ⁵⁻⁷ photovoltaic devices, ⁸⁻¹⁰ and light-emitting diodes. ¹¹⁻¹³ A representative example of PAHs developed by Müllen et al is hexa-peri-hexabenzocoronene (HBC), ^{14,15} HBC and its derivatives were known for their unique self-organization into columnar superstructures and exhibit one of the highest charge-carrier mobilities for mesogens. ¹⁶⁻²⁰ Various devices based on nanographene molecules with different structures and functionalities have been well developed by organic synthetic or supramolecular protocols, such as Aida's nanotubes,²¹⁻²³ Li's graphene quantum dots,^{24,25} and Müllen's graphene nanoribbons and large graphenes.¹ Ladder or ribbon-type polymers and oligomers possessing two dimensionally planar conformation, high delocalization, and functional optic-electronic properties attract great scientific interest considering their potential applications in areas such as electroluminescence, plastic lasers, and molecular electronics. 26-29

Pyrene, which has been widely investigated for its unique properties, is a promising building block to develop new extended π-systems for organic optoelectronics. ^{4, 30-36} As the smallest peri condensed polynuclear benzenoid aromatic hydrocarbon, pyrene has been used to architecture ladder or ribbon-type polymers and oligomers. ^{37, 29} By comparison to polymers, monodisperse conjugated oligomers can be free from structural defects, possessing high purity from conventional purification methods, are more suitable for detailed structure-property relationships studies. ³⁸⁻⁴³ However, in spite of their unique material properties, the synthesis and characterization of defect-free, soluble hydrocarbon ribbon molecule is still one of the ongoing challenges. Although a few pyrene derivatives fused at the K-region were developed,

and they exhibited interesting properties, long-range ribbon-type oligomers are more attractive and seldom.⁴⁴

In this paper we design a series of π -conjugated graphene ribbon oligomers (1-4) with increasing length through fusion at the K-region. The synthesis of the oligomers was in the way of the typical strategy of PAH production: first, the design and synthesis of soluble polyphenylene precursor molecules and second, the formation of aromatic C-C bonds by cyclodehydrogenation. Thus, appropriate polyphenylene precursor structures can be converted in a single reaction step into the desired planarized PAH structures. For a successful cyclodehydrogenation toward large graphene ribbon, the well defined precursors (7, 10, 16, 19 and 22) containing pyrene and biphenyl units as repeated units were synthesized, they can be converted into planar ribbon-type graphene pieces by cyclodehydrogenation.

Figure 1. the structure of ladder-type graphene oligomers.

The synthetic route to oligomers 1, 2 and 14 was shown in scheme 1. The precursor 7 was obtained from palladium-catalyzed Suzuki coupling reaction between

Download English Version:

https://daneshyari.com/en/article/5260808

Download Persian Version:

https://daneshyari.com/article/5260808

<u>Daneshyari.com</u>