ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Strepoxazine A, a new cytotoxic phenoxazin from the marine sponge-derived bacterium *Streptomyces* sp. SBT345

Cheng Cheng ^a, Eman M. Othman ^{b,f}, Agnes Fekete ^c, Markus Krischke ^c, Helga Stopper ^b, RuAngelie Edrada-Ebel ^d, Martin J. Mueller ^c, Ute Hentschel ^e, Usama Ramadan Abdelmohsen ^{a,g,*}

- ^a Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
- ^b Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
- Department of Pharmaceutical Biology, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
- ^d Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, Glasgow, UK
- e GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
- ^f Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- ^g Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt

ARTICLE INFO

Article history: Received 19 July 2016 Revised 1 August 2016 Accepted 2 August 2016 Available online 3 August 2016

Keywords: Sponges Actinomycetes Streptomyces Phenazine Strepoxazine A Cytotoxic

ABSTRACT

One new phenoxazin analogue, strepoxazine A (1), along with two known antibiotic phenazines phencomycin (2) and tubermycin B (3) were isolated from the solid culture of *Streptomyces* sp. SBT345 which had previously been recovered from the Mediterranean sponge *Agelas oroides*. The structures of compounds 1, 2 and 3 were determined by spectroscopic analyses including 1D and 2D NMR, and HR-ESI-MS experiments as well as comparison to the literature. We further investigated the apoptotic effect of the three compounds on the human promyelocytic leukaemia cells HL-60 and human breast adenocarcinoma cells MCF-7. Only strepoxazine A (1) showed cytotoxicity against leukaemia cells HL-60 cells. These results demonstrate that sponge-associated actinomycetes are rich sources for natural products with new pharmacological activities and relevance to drug discovery.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

The quest for novel biologically active structures is a challenge in natural product-directed drug discovery. The biological richness and diversity of marine source attracted scientists to seek for unique and novel molecules from the previously underexplored area, such as the deep sea sediments, marine algae, marine invertebrates, and their associated microbes. Marine sponge-associated microorganisms have exhibited good potential in producing natural products with diverse medicinal and pharmaceutical properties. ^{1–5} In particular, sponge-associated actinomycetes provide novel secondary metabolites ^{6,7} with various biological activities, such as antimicrobial, ^{8,9} anti-parasitic, ^{10,11} immunomodulatory, ¹² antichlamydial, ¹³ antioxidant ⁷ and cytotoxic ^{14,15} activities. Our efforts on searching for novel biologically active compounds from marine sponge-associated actinomycetes led to the isolation of one new phenoxazin analogue strepoxazine A (1), and two known

phenazine analogues phencomycin (**2**) and tubermycin B (**3**) from a sponge derived *Streptomyces* sp. SBT345. Phenoxazines and phenazines are known as antibiotics against a broad spectrum of pathogen microorganisms from plant^{16,17} and human.^{18,19} Herein, we reported on the structure of the new phenoxazin analogue strepoxazine A and the cytotoxic properties of the three Streptomycete's secondary metabolites.

Results and discussion

On our continuous effort to search for new cytotoxic natural products from sponge-associated actinomycetes, *Streptomyces* sp. SBT345 was selected due to its activity against the human promyelocytic leukaemia cells HL-60. *Streptomyces* sp. SBT345 (GenBank accession Nr. KP238414) was cultivated from the Mediterranean sponge *Agelas oroides* that was collected offshore Pollonia, Milos, Greece (N36.76612°; E24.51530°) in May 2013. ²⁰ 10⁵ cells of *Streptomyces* sp. SBT345 were inoculated on ISP2 medium agar plates²¹ (a total of 300 plates) and incubated at 30 °C for 5 days. Colonies and agar were extracted with ethyl acetate. Colonies and agar were cut into small pieces and were macerated twice with 500 mL ethyl

^{*} Corresponding author. Tel.: +49 931 31 80297; fax: +49 931 31 86235. E-mail address: usama.ramadan@uni-wuerzburg.de (U.R. Abdelmohsen).

[†] Permanent address.

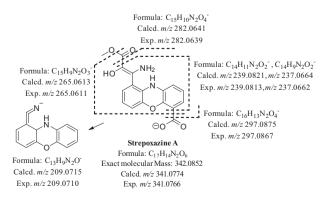

Figure 1. Structures of strepoxazine A (1) with HMBC correlations (arrows from H to C), phencomycin (2), and tubermycin B (3).

Table 1 NMR-spectroscopic data of strepoxazine A (1) in MeOD- d_4 (1 H: 600 MHz; 13 C: 150 MHz)

Position C/H No.	δ_{H} , Mult	COSY	δ_{C} , Mult	HMBC ($J = 8.3 \text{ Hz}$)
1	7.38 (1H, s, br)	7.01	127.8 (1C)	
2	7.01 (1H, t)	7.93, 7.38	120.6 (1C)	121.5, 126.1, 127.8, 131.3, 144.3
3	7.93 (1H, d)	7.38, 7.01	131.3 (1C)	127.8, 144.2, 173.3
4			126.1 (1C)	
4a			144.2 (1C)	
5a			142.5 (1C)	
6	7.18 (1H, d)	7.24	119.6 (1C)	125.0, 122.9
7	7.24 (1H, t)	7.18	127.9 (1C)	129.4, 142.5
8	7.43 (1H, s, br)	7.24	122.9 (1C)	
9			129.4 (1C)	
9a			125.0 (1C)	
10a			121.5 (1C)	
11			173.3 (1C)	
12			133.7 (1C)	
13			134.1 (1C)	
14			168.5 (1C)	
15	3.88 (3H, s)		52.8 (1C)	168.5

acetate which was followed by 500 mL acetone under continuous shaking at 150 rpm overnight. The ethyl acetate extract (630 mg) was fractionated on a Sephadex LH20 column (32–64 μ m, 100 \times 10 mm, Merck) eluting with H₂O/MeOH (90:10%) to MeOH (100%), to yield 6 fractions. Fraction Nr. 5 was subjected to C18 reversed-phase chromatography and led to the isolation of compounds 1–3²² (Fig. 1).

Compound 1 was obtained as a yellowish powder and the molecular formula was established as C₁₇H₁₄N₂O₆ by ESI-HR-MS (found at m/z 341.0766 [M–H]⁻, calcd 341.0774; and m/z365.0757 [M+Na]⁺, calcd 365.0750) requiring 12° of unsaturation. The following NMR spectral data were acquired using a 600 MHz instrument: ¹H, ¹³C, ¹³C-DEPT135, ¹H-¹H COSY, ¹H-¹³C HSQC, ${}^{1}\text{H}-{}^{13}\text{C HMBC}$ (optimized to J=8.3~Hz) in MeOD- $d_4{}^{23}$ and were tabulated in Table 1. The ¹H NMR spectrum exhibited the resonances for six sp^2 aromatic proton signals at δ_H 7.38 (1H, br s, H-1), 7.01 (1H, t, J = 7.9, 15.7 Hz, H-2), 7.93 (1H, d, J = 7.9 Hz, H-3), 7.19 (1H, t, J = 7.9 Hz, H-3d, J = 7.7 Hz, H-6), 7.24 (1H, t, J = 7.7, 15.4 Hz, H-7), 7.43 (1H, br s, H-8) ppm, of which two independent aromatic systems were observed based on the analysis of COSY spectrum. The HMBC cross-peaks from the aromatic protons of H-2 to $\delta_{\rm C}$ 121.5 (1C, C-10a) ppm, H-3 to $\delta_{\rm C}$ 144.2 (1C, C-4a) ppm, H-7 to $\delta_{\rm C}$ 142.5 (1C, C-5a) ppm and H-6 to $\delta_{\rm C}$ 125.0 (1C, C-9a) ppm led to the assignment of a phenoxazin nucleus, in which the carbon resonance of C-4a, C-5a. C-9a and C-10a were consistent with the other analogues in the literature exemplified by Venezueline C and Venezueline D.²⁴ Additional NMR data conducted to assign one carboxylic acid group to C-4 by correlation observed between H-3 and a carboxylic carbon at δ_C 173.3 (1C, C-11) ppm, and one methyl ester by correlation observed between the methoxy protons at δ_H 3.88 (3H, s, H-15) ppm to the other carbonyl at δ_C 168.5 (1C, C-14) ppm in the HMBC spectrum. The presence of the carboxylic acid group was further verified in ESI-HRMS/MS spectra (collision voltage of 10 eV) by the loss mass of 43.9898 Da (calcd for COO) from the molecular ion mass m/z 341.0766 (calcd for $C_{17}H_{13}N_2O_6^-$) to fragment ion mass m/z 297.0867 (calcd for $C_{16}H_{13}N_2O_4^-$) (Fig. 2). The presence of the methyl ester was also verified by the loss mass of 59. 0234 Da (calcd for $C_2H_3O_2$) in both negative and positive ionization modes from the molecular ion mass m/z 341.0766 (calcd for $C_{17}H_{13}N_2O_6^-$) to fragment ion mass m/z 282.0639 (calcd for $C_{15}H_{10}N_2O_4^-$) (Fig. 2), as well as the molecular ion mass m/z 365.0757 (calcd for $C_{17}H_{14}N_2O_6Na^+$) to fragment ion mass m/z 306.0619 (calcd for $C_{15}H_{11}N_2O_4Na^+$) (Fig. 3) respectively. The fragment ion mass m/z 265.0611 (calcd for $C_{15}H_9N_2O_3^-$) in negative ionization mode (Fig. 2), and m/z 288.0515 (calcd for $C_{15}H_9N_2O_3Na^+$) in the positive ionization mode (Fig. 3) were deduced by losing the carboxylic acid and methoxy groups from the molecular ion.

 $\begin{tabular}{ll} Figure 2. ESI-HRMS/MS fragmentation of strepoxazine A in negative ionization mode. \end{tabular}$

Download English Version:

https://daneshyari.com/en/article/5260817

Download Persian Version:

https://daneshyari.com/article/5260817

<u>Daneshyari.com</u>