

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Periconiasin G, a new cytochalasan with unprecedented 7/6/5 tricyclic ring system from the endophytic fungus *Periconia* sp.

Dewu Zhang ^{a,b}, Xiaoyu Tao ^a, Jimei Liu ^a, Ridao Chen ^a, Min Zhang ^a, Li Li ^a, Xiaomei Fang ^b, Li-Yan Yu ^{b,*}, Iungui Dai ^{a,*}

ARTICLE INFO

Article history:
Received 30 October 2015
Revised 4 January 2016
Accepted 8 January 2016
Available online 8 January 2016

Keywords: Periconia Endophytic fungus Cytochalasan Periconiasin

ABSTRACT

Two new cytochalasans, periconiasin G (1) and periconiasin H (2) were isolated from endophytic fungus *Periconia* sp. F-31. Compound 1 is the first cytochalasan with a 7/6/5 tricyclic ring system, and compound 2 possesses a rare sulfoxide group. Their structures including absolute configurations were elucidated by extensive spectroscopic analyses and ECD calculations. A possible biogenetic pathway for these two compounds was proposed. Compound 1 showed weak anti-HIV activity with IC₅₀ value of 67.0 μ M.

© 2016 Elsevier Ltd. All rights reserved.

Cytochalasans are a large group of polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid metabolites which display a wide range of diverse biological activities, such as antitumor, 1-3 antibacterial, 4 immunomodulatory, 5 nematicidal, 6 and phytotoxic activities.^{3,7} Generally, cytochalasans feature tricyclic core in which a macrocyclic ring is fused to an isoindolone moiety, and their macrocyclic rings commonly possess 11- and 13-membered carbocyclic rings or fused ring system,⁸ and some unique cytochalasans with 9- and 12-membered carbocyclic rings or derivative fused rings were reported in recent years.9-11 The endophytic fungus Periconia sp. F-31, isolated from the medicinal plant Annona muricata, displayed antiviral, cytotoxic, and anti-inflammatory activities. Our previous chemical investigation of this fungi afforded structurally rare tricyclic cytochalasans with nine-membered carbocycle fused to isoindolone moiety, which showed significant cytotoxic activity.9 As part of ongoing search for diverse bioactive metabolites from this fungus, two new cytochalasans, periconiasins G (1) and H (2) were isolated (Fig. 1). Interestingly, compound 1 features unique 7/6/5 tricyclic ring system, in which the seven-membered ring is the smallest carbocyclic ring (part of macrocyclic ring) in typical tricyclic cytochalasans so far. Compound 2 possesses a rare sulfoxide group in all types of cytocha-

E-mail addresses: yly@cpcc.ac.cn (L.-Y. Yu), jgdai@imm.ac.cn (J. Dai).

lasans. Herein, we report their isolation, structure elucidation, plausible biogenetic pathway, and bioactivities.

The fungi *Periconia* sp. F-31 was incubated in PDA medium. The cultures were filtered under reduced pressure to yield the filtrate and mycelia. The mycelia was extracted with CH_3OH to yield a crude extract (240 g), which was suspended in H_2O and partitioned using EtOAc to afford EtOAc extract (66 g). The EtOAc extract was further separated by silica gel column chromatography (CC), Sephadex LH-20 CC, and semipreparative HPLC to give **1** (6.0 mg). The filtrate (140 l) was applied through an Amberlite XAD-16 macroporous adsorbent resin column eluting with H_2O and 95% EtOH, successively. The EtOH residue was extracted with EtOAc, and then EtOAc extract (25 g) was fractionated by silica gel CC, Sephadex LH-20 CC, and semipreparative HPLC to afford **2** (4.8 mg).

Periconiasin G (1)¹² was isolated as white powder and gave a HRESIMS ion peak at m/z 318.2427 [M+H]⁺, corresponding to a molecular formula of $C_{20}H_{31}NO_2$ with six degrees of unsaturation. The IR absorption bands at 3207, 1694, and 1678 cm⁻¹ indicated the presence of NH and carbonyl groups. The ¹³C NMR and DEPT spectra displayed 20 carbon resonances including two carbonyl carbons (δ_C 213.8, 174.6), two olefinic carbons (δ_C 138.8, 129.0), one quaternary carbon (δ_C 66.3), six methines (δ_C 54.3, 51.2, 38.4, 36.2, 34.6, 24.1), four methylenes (δ_C 48.1, 42.4, 37.5, 31.8), as well as five methyls (δ_C 23.9, 23.3, 21.3, 19.8, 13.5). The protons and proton-connected carbons in the NMR spectra of 1 were assigned

^a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

b Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

^{*} Corresponding authors. Tel./fax: +86 10 63187118 (L.-Y.Y.); tel.: +86 10 63165195; fax: +86 10 63017757 (J.D.).

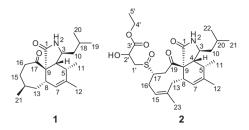
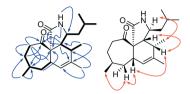



Figure 1. Chemical structures of 1 and 2.

Figure 2. $^{1}\text{H}-^{1}\text{H COSY}$ (\longrightarrow), HMBC (\longrightarrow), and NOESY (\longleftrightarrow) correlations of **1**.

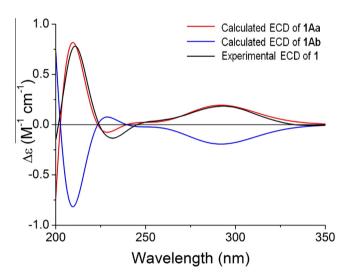


Figure 3. The calculated ECD spectra of 1A and the experimental CD spectrum of 1.

unambiguously by DEPT and HSQC spectroscopic data. The HMBC correlations (Fig. 2) of H-2/C-3, C-4, and C-9, H-4/C-1, C-3, C-5, C-6, C-10, and C-17, H_3 -12/C-5, C-6, and C-7, along with the correlations from H-8 to H-7 and H_2 -13, and the spin system of H-3/H₂-10/H-18/H₃-19/H₃-20 in the $^1H_-^1H$ COSY spectrum indicated the presence of an isoindolone with isobutyl moiety at C-3. Furthermore, the HMBC correlations for H_2 -13/C-8 and C-9, H_3 -21/C-13, C-14, and C-15, H_2 -16/C-9, C-14, C-15, and C-17, H-4/C-17, together with the $^1H_-^1H$ COSY correlations of H_2 -13/H-14/H₂-15/H₂-16 established another seven-membered ring. Therefore, the planar structure of **1** was determined to be a new type of cytochalasans with a unusual 7/6/5 tricyclic ring system. Intriguingly, compound **1** possesses smallest tricyclic ring system in typical cytochalasans.

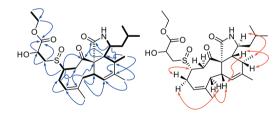

The relative configuration of **1** was established by NOESY spectrum. The NOEs between H-3 and H₃-11 indicated that H-3 and H₃-11 were α -oriented, the no NOEs between H-4 and H-3 established the β -orientation of H-4, the NOEs from H-5 to H-4 and H-8 suggested that they were β -oriented. The NOEs of H-8/H-7 and H-13 β , H-13 β /H₃-21, along with no NOEs of H-13 α /H-7 and H₃-21 assigned the β -oriented of methyl group (CH₃-21). Computational methods were used to determine the absolute configuration of **1**

Table 1

H and 13C NMR data of 1 and 2

No.	1 ^a		2 ^b	
	δ_{C}	δ _H (J in Hz)	δ_{C}	δ _H (J in Hz)
1	174.6		176.6	
2		7.95 (s)		
3	51.2	2.93 (m)	51.1	3.20 (m)
4	54.3	2.23 (dd, 4.5, 4.0)	56.5	2.31 (dd, 5.4, 2.4)
5	34.6	2.41 (m)	36.2	2.52 (overlapped)
6	138.8		140.3	
7	129.0	5.34 (s)	130.0	5.45 (s)
8	38.4	2.56 (m)	44.6	2.50 (overlapped)
9	66.3		66.5	
10	48.1	1.36 (m), 1.09 (m)	49.9	1.27 (m), 1.14 (m)
11	13.5	1.06 (d, 7.5)	13.6	1.22 (d, 7.2)
12	19.8	1.69 (s)	19.8	1.76 (br s)
13	37.5	2.59 (m, Hα)	31.9	4.19 (overlapped, Hα)
		1.55 (br d, 12.5, Hβ)		1.67 (br d, 13.8, Hβ)
14	36.2	1.69 (overlapped)	138.8	
15	31.8	1.73 (m), 1.39 (m)	123.5	5.11 (dd, 10.2, 7.2)
16	42.4	2.90 (m), 2.35 (m)	26.9	2.76 (m, Hα)
				2.23 (dd, 13.8, 6.6, Hβ)
17	213.8		59.9	3.07 (td, 10.8, 3.6)
18	24.1	1.65 (m)	37.4	3.55 (dd, 12.6, 10.8)
				2.49 (overlapped)
19	21.3	0.82 (d, 6.0)	212.5	
20	23.9	0.84 (d, 7.0)	25.3	1.69 (m)
21	23.3	0.91 (d, 6.0)	21.8	0.89 (d, 6.6)
22			23.9	0.87 (d, 6.6)
23			23.9	1.62 (s)
1′			54.5	3.01 (dd, 13.2, 10.8)
				2.94 (dd, 13.2, 2.4)
2′			66.5	4.58 (dd, 10.8, 2.4)
3′			173.3	
4'			61.9	4.19 (q, 6.6)
5′			14.4	1.25 (t, 6.6)

- $^{\rm a}$ $^{\rm 1}$ H NMR (500 MHz), $^{\rm 13}$ C NMR (125 MHz), DMSO- $d_{\rm 6}$.
- $^{b-1}$ H NMR (600 MHz), 13 C NMR (150 MHz), acetone- d_6 .

Figure 4. $^{1}\text{H}-^{1}\text{H}$ COSY (\longrightarrow), HMBC (\longrightarrow), and NOESY (\longleftrightarrow) correlations of **2**.

by comparing the experimental and simulated electronic circular dichroism (ECD) spectra using the TD-DFT method at the B3LYP/6-31G(d) level. Because the conformationally flexible side chain had no effect on the CD spectrum of 1, a simplified structure of 1A (Figs. S1 and S2), in which a methyl replaced isobutyl in 1, was used for the ECD calculations. Two stereoisomers, (3S,4R,5S,8S,9S,14S)-1Aa and (3R,4S,5R,8R,9R,14R)-1Ab existed on the basis of the relative configuration. The calculated ECD spectrum of 1Aa was consistent with the experimental CD curve (Fig. 3), indicating the absolute configuration of 1 as 3S,4R,5S,8S,9S,14S. Thus, the structure of 1 was established as periconiasin G (Table 1).

Periconiasin H (**2**)¹³ was obtained as colorless gum. Its molecular formula of $C_{27}H_{41}NO_6S$ with nine degrees of unsaturation was established by a HRESIMS ion peak at m/z 508.2703 [M+H]⁺. The IR spectrum with strong absorption at 1028 cm⁻¹ display the existence of sulfoxide group. ^{14,15} Comparison of ¹H and ¹³C NMR data of **2** with those of periconiasin A⁹ indicated that they shared similar cytochalasan skeleton. However, compound **2** showed the additional presence of one methylene [δ_H 3.01 (1H, dd, J = 13.2, 10.8 Hz), 2.94 (1H, dd, J = 13.2, 2.4 Hz); δ_C 54.5], one oxygenated

Download English Version:

https://daneshyari.com/en/article/5261258

Download Persian Version:

https://daneshyari.com/article/5261258

<u>Daneshyari.com</u>