Tetrahedron Letters 57 (2016) 321-324

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A new synthetic approach to polysubstituted-2-pyridones from enamino esters and diethyl ethoxymethylenemalonate under catalyst- and solvent-free conditions

Xian-Liang Zhao^{a,*}, Ke-fang Yang^{b,*}, Yan-Ping Zhang^a, Xiao-Hang Fu^a, Li-Wen Xu^b

ABSTRACT

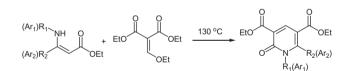
^a School of Biological and Chemical Engineering/School of Light Industry, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou 310023, China ^b Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China

ARTICLE INFO

Article history: Received 16 October 2015 Revised 25 November 2015 Accepted 2 December 2015 Available online 7 December 2015

Keywords: Pvridone Enamino ester Diethyl ethoxymethylenemalonate Catalyst- and solvent-free

A simple and novel synthesis of polytrisubstituted-2-pyridones derivatives by the reaction of enamino esters and diethyl ethoxymethylenemalonate has been reported. The method provides a rapid synthetic route for the construction of 2-pyridones under catalyst- and solvent-free reaction conditions in moderate-to-good yields.


© 2015 Elsevier Ltd. All rights reserved.

Introduction

The 2-pyridone is an important structural unit found in many natural compounds with biological and pharmaceutical activity. Therefore, they have drawn considerable interest from synthetic chemists.² Many literature sources describe more general approaches involving Michael addition of acetonitrile derivatives to an α , β -unsaturated carbonyl substrate and subsequent hydrolytic cyclization followed by oxidative aromatization of the resulting 3,4-dihydropyridone or by eliminative aromatization employing acetoamino and benzenetriazolyl leaving groups.³ In many cases, strongly basic catalysts such as sodium hydride or alkoxides are required for this transformation.⁴ Enamino esters are also important intermediates for the synthesis of heterocycles.⁵ Enamino esters usually react as ambident nucleophiles at nitrogen and/or the C-3 position to form heterocycles. However, few reports have been concerned with the preparation of 2-pyridones starting from enamino esters.⁶ Thus, the development of efficient methods using nucleophiles derived from enamino esters toward 2-pyridones is still highly desirable.

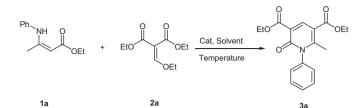
Diethyl ethoxymethylenemalonate is a useful regent for synthesis of heterocyclic compounds.⁷ However, most literature reported that the first step of formation of heterocyclic compounds is ethoxy group substituted by nitrogen. Recently, Poudel reported

* Corresponding authors.

Scheme 1. Synthesis of polysubstituted-2-pyridones from enamino esters and diethyl ethoxymethylenemalonate.

4-oxo-4H-chromene-3-carbaldehydes with 1,3-diketoesters and anilines for the synthesis of 2-pyridone derivatives. In this reaction mechanism, firstly, amine was as ambident nucleophiles to open the cycle, then heterocycles were formed through ring closure.⁸

In our work, enamino esters react as nucleophiles at the C-3 position to form heterocycles. Herein, we introduce a catalystand solvent-free synthesis of polysubstituted 2-pyridones using the reaction of enamino esters and diethyl ethoxymethylenemalonate (Scheme 1).

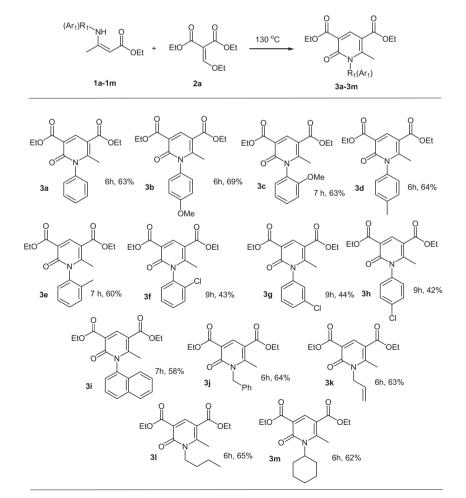

Results and discussion

The reaction of (*Z*)-ethyl-3-(phenylamino)but-2-enoate (**1a**) with diethyl ethoxymethylenemalonate (2a) was selected as a prototypical case to screen the experimental condition, and the results are depicted in Table 1. When the reaction was carried out using CuI (10 mol %) as the catalyst in MeCN under a nitrogen

Table 1

Optimization of the reaction conditions for the synthesis of 3a^a

Entry	Catalyst	Solvent	Temp/°C	Time/h	Yield/% ^b
1	CuI	CH₃CN	80	24	10
2	CuI	DMSO	130	6	55
3	FeCl ₃	DMSO	130	12	23
4	ZnCl ₂	DMSO	130	12	21
5	EtONa	DMF	130	12	0
6	t-BuOK	DMF	130	12	0
7	NaH	DMF	130	12	0
8	_	DMSO	130	6	58
9	_	DMF	130	12	23
10	_	Toluene	130	12	12
11	_	1,4-Dioxane	130	12	8
12	_	-	130	6	63
13	_	-	130	6	43 ^c
14	_	-	140	6	62
15	_	-	120	8	52
16	_	_	110	14	47


^a Reaction conditions: **1a** (1.0 mmol), **2a** (1.0 mmol), nitrogen.

^b Isolated yield.

^c Reaction carried out open to air.

atmosphere at 80 °C, the corresponding 2-pyridone (3a) was obtained in 10% isolated yield within 24 h (Table 1, entry 1). 3a could be produced in 55% yield using DMSO as the reaction solvent at 130 °C with CuI (10 mol %) as catalyst for 6 h (entry 2). Other Lewis acid catalysts such as FeCl₃ and ZnCl₂ gave lower yields under the same reaction conditions (entries 3 and 4). The influence of a strong base, such as NaOEt, KOBu, NaH, on the reaction yield was also examined (entries 5-7). The desired product (3a) was not afforded in DMF at 130 °C using a strong base (30 mol %) as catalyst even after 12 h. When the reaction was performed in the absence of a catalyst in DMSO at 130 °C under a nitrogen atmosphere. The product (3a) was obtained in 58% yield (entry 8). Switching to other solvents such as DMF, toluene and 1, 4-dioxane afforded unsatisfactory results (entries 9-11). It was noteworthy that the reaction proceeded smoothly under solvent-free conditions and the product (**3a**) was obtained in 63% yield (entry 12). In addition, the yield of product (**3a**) decreased when the reaction was conducted in open air (entry 13). Finally, the influence of temperature on the reaction was also investigated. High temperatures (130 °C) proved the best choice for promoting the reaction, as using lower temperatures increased the reaction time and reduced the reaction yield (entries 14-16). In addition, higher temperatures did not accelerate the reaction or promote the reaction yield.

A variety of enamino esters were synthesized to explore the scope of the 2-pyridone under the optimized reaction conditions.⁹ The representative results are shown in Scheme 2. The substituents effects on the aromatic amine were studied. Enamino esters bearing electron-withdrawing aryl groups afforded the desired

Scheme 2. Substrate scope of the reaction between various methyl enamino esters and diethyl ethoxymethylenemalonate. Reaction conditions: 1a (1.0 mmol), 2a (1.0 mmol), 130 °C, nitrogen atmosphere; isolated yield.

Download English Version:

https://daneshyari.com/en/article/5261311

Download Persian Version:

https://daneshyari.com/article/5261311

Daneshyari.com