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a b s t r a c t

Quadratic optimization lies at the very heart of many structural pattern recognition and computer vision
problems, such as graph matching, object recognition, image segmentation, etc., and it is therefore of cru-
cial importance to devise algorithmic solutions that are both efficient and effective. As it turns out, a large
class of quadratic optimization problems can be formulated in terms of so-called ‘‘standard quadratic
programs’’ (StQPs), which ask for finding the extrema of a quadratic polynomial over the standard sim-
plex. Computationally, the standard approach for attacking this class of problems is to use replicator
dynamics, a well-known family of algorithms from evolutionary game theory inspired by Darwinian
selection processes. Despite their effectiveness in finding good solutions in a variety of applications, how-
ever, replicator dynamics suffer from being computationally expensive, as they require a number of oper-
ations per step which grows quadratically with the dimensionality of the problem being solved. In order
to avoid this drawback, in this paper we propose a new population game dynamics (INIMDYN) which is
motivated by the analogy with infection and immunization processes within a population of ‘‘players.’’
We prove that the evolution of our dynamics is governed by a quadratic Lyapunov function, representing
the average population payoff, which strictly increases along non-constant trajectories and that local
solutions of StQPs are asymptotically stable (i.e., attractive) points. Each step of INIMDYN is shown to have
a linear time/space complexity, thereby allowing us to use it as a more efficient alternative to standard
approaches for solving StQPs and related optimization problems. Indeed, we demonstrate experimentally
that INIMDYN is orders of magnitude faster than, and as accurate as, replicator dynamics on various appli-
cations ranging from tree matching to image registration, matching and segmentation.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Optimality is arguably one of the most pervasive and flexible
meta-principles used in computer vision and pattern recognition,
as it allows one to formulate real-world problems in a pure, ab-
stract setting with solid theoretical as well as philosophical under-
pinnings, and permits access to the full arsenal of algorithms
available in the optimization and operations research literature.
On the other hand, although graphs have always been an impor-
tant tool in computer vision because of their representational
power and flexibility, there is now a renewed and growing interest
toward explicitly formulating vision problems as graph optimiza-
tion problems, and researchers are increasingly making use of
sophisticated graph-theoretic concepts, results, and algorithms
[18,3].

Among the variety of optimization problem families, quadratic
optimization plays unquestionably a prominent role in computer
vision as it naturally arises whenever abstract entities (e.g., pixels,

edgels, regions, etc.) exhibit mutual pairwise interactions. The
maximum clique problem, for example, which finds applications
in such problems as shape and object recognition [6,2,16,45,55],
stereo correspondence [26], point pattern matching [36], and im-
age sequence analysis [48], has been successfully addressed in
terms of quadratic optimization via the Motzkin–Straus theorem,
a result that has recently been generalized in various ways
[41,57,52] and applied to pairwise clustering problems (see Section
2). Other important applications of quadratic programming can be
found in [37,21,54].

As it turns out, a large class of quadratic optimization problems
can be formulated in terms of standard quadratic programs (StQPs),
which ask for finding the extrema of a quadratic polynomial over
the standard simplex. Computationally, the standard approach to
solving StQPs is to use replicator dynamics, a class of evolutionary
game-theoretic algorithms inspired by Darwinian selection pro-
cesses. Indeed, there exists an intimate connection between opti-
mization and game theory, as it can be seen that the solutions of
any StQP are in one-to-one correspondence to the equilibria of a
particular class of two-player games, known as partnership, or
doubly-symmetric games, whereby the players’ payoffs are as-
sumed to coincide [62,25]. Interestingly, replicator dynamics also

1077-3142/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2010.12.004

⇑ Corresponding author.
E-mail address: srotabul@dsi.unive.it (S. Rota Bulò).

Computer Vision and Image Understanding 115 (2011) 984–995

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu

http://dx.doi.org/10.1016/j.cviu.2010.12.004
mailto:srotabul@dsi.unive.it
http://dx.doi.org/10.1016/j.cviu.2010.12.004
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


arise independently in different branches of theoretical biology
[25] and are closely related to the classical Lotka–Volterra equa-
tions from population ecology, while in population genetics they
are known as selection equations [17]. Further, replicator dynamics
turn out to be a special instance of a general class of dynamical sys-
tems introduced by Baum and Eagon [4] in the context of Markov
chain theory and represent a special case of the well-known relax-
ation labeling processes for solving consistent labeling problems
[49].

Although replicator dynamics have proven to be an effective
technique in a variety of StQP applications [44,8,56,34,41], a typical
problem associated with these algorithms is the scaling behavior
with the dimensionality of the problem being solved. In particular,
for a problem involving N variables, the computational complexity
of each replicator dynamics step is OðN2Þ, thereby hindering their
use in large-scale applications, such as high-resolution image/vi-
deo segmentation and matching. Previous attempts aimed at
improving the computational time of the replicator dynamics can
be found in works of Pelillo [42,43,47], where an exponential rep-
licator model (a member of a larger class of ‘‘payoff-monotonic’’
game dynamics) has been employed in order to reduce the number
of iterations needed for the algorithm to find a solution. However,
despite requiring less iterations, the proposed solution still suffers
from a per-step quadratic complexity.

In this paper we study a new population game dynamics, the
infection-immunization dynamics (INIMDYN), which avoids this draw-
back and leads to a remarkable computational gain over previous
approaches. INIMDYN is motivated by the analogy with infection
and immunization processes within a population of ‘‘players.’’
Intuitively, the evolutionary process can be interpreted as follows:
as time passes by, an advertisement on the basis of the aggregate
behavior of the population tells the agents that a certain strategy
is successful or is unsuccessful. A strategy is successful if it is per-
forming best in terms of payoff in the population, whereas it is
unsuccessful if it is the worst performing strategy still alive in
the population. Both variants will be taken into account: in con-
trast to the best-reply approach typically used in evolutionary
game theory [25], which selects the strategy with highest average
payoff, a successful strategy is chosen only if its absolute deviation
from the average payoff is largest among all absolute deviations.
Otherwise, the largest absolute deviation is provided by an unsuc-
cessful strategy, and we move straight away from it by help of its
co-strategy (to be defined below). In its most generic formulation,
this phase encodes a particular selection function for infective
strategies, which basically increases (decreases) the share of agents
playing the successful (unsuccessful) strategy, as long as there is no
barrier to the invasion. Hence, assuming that agents can gather
information only about the announced strategy, they will be in-
clined to switch to the successful strategy, or abandon the one
unsuccessful.

In the paper we prove that the evolution of our dynamics is gov-
erned by a quadratic Lyapunov function, representing the average
population payoff, which strictly increases along any non-constant
trajectory and that local solutions of StQPs are asymptotically sta-
ble (i.e., attractive) equilibrium points. We also show that each step
of INIMDYN has a linear time/space complexity, as opposed to the
quadratic per-step complexity of replicator dynamics. We provide
experimental evidence that the proposed algorithm is orders of
magnitude faster than the standard algorithms on various graph-
based computer vision applications, ranging from tree matching
to image segmentation, matching and registration, while preserv-
ing the quality of the solutions found. Hence our approach can
be considered an efficient and theoretically sound alternative to
the replicator dynamics, that can be usefully employed in those
graph-based computer vision and pattern recognition problems
where computational complexity might be an issue, e.g., video

and high-resolution image segmentation, matching of large graphs,
clustering of large datasets, etc.

The paper is organized as follows. In Section 2 we provide a
short review of various graph-based problems that lead to an StQP
formulation, while in Section 3 we summarize the basic concepts
and results of evolutionary graph theory and replicator dynamics.
Section 4 is devoted to the description of our new class of evolu-
tionary dynamics and Section 5 describes a specific instance which
exhibits a linear time/space complexity per step. In Section 6 we
report on the experimental results, and we finally draw our conclu-
sions in Section 7. A preliminary version of this work has been pre-
sented in [51].

2. Quadratic formulation for graph-theoretic problems

Many graph-theoretic problems can be formulated in terms of a
standard quadratic program (StQP), which is defined as:

maximize x>Qx
subject to x 2 D

where Q 2 Rn�n is a symmetric matrix, and D is the standard simplex
of Rn:

D ¼ x 2 Rn :
Xn

i¼1

xi ¼ 1 and xi P 0; i ¼ 1; . . . ;n

( )
:

A large class of quadratic programming problems (QPs), instances of
which arise frequently in computer vision and pattern recognition,
can be rewritten in terms of StQPs. In fact, consider a general QP
over a bounded polyhedron

maximize 1
2 x>Qxþ c>x

subject to x 2 D
ð1Þ

where M ¼ convfv1; . . . ;vkg# Rn is the convex hull of the points v1,
. . ., vk.

It is easy to see that the original QP in (1) can be written as the
following StQP:

maximize y> bQ y
subject to y 2 D

where bQ ¼ 1
2 ðV

>QV þ e>V>cþ c>VeÞ and V = [v1, . . .,vk].
Thus every QP over a polytope can be expressed as an StQP. Of

course, this approach is practical only when the polytope is explic-
itly expressed in terms of its k vertices (and when k is not too
large). This is the case of QPs over the ‘1 ball, where V = [Ij � I],I
being the n � n identity matrix and D � R2n [11]. However, even
for general QPs of the form:

maximize 1
2 x>Qxþ c>x

subject to x 2 Rn
þ and Ax ¼ b

we can use StQP as a relaxation without using all vertices (see [12]
for details).

Now, we provide a short review of a few graph-theoretic prob-
lems that can be formulated in terms of a StQP, namely the maxi-
mum clique problem, graph/tree matching, and pairwise data
clustering.

2.1. Maximum clique problem

Let G = (V,E) be an undirected graph, where V = {1, . . . ,n} is the
set of vertices and E # V � V is the set of edges. The order of G is
the number of its vertices, and its size is the number of edges.
Two vertices i, j 2 V are said to be adjacent if (i, j) 2 E. The adjacency
matrix of G is the n � n symmetric matrix AG = (aij) defined as aij = 1
if (i, j) 2 E, and aij = 0 otherwise. A subset C of vertices in G is called
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