#### Tetrahedron Letters 56 (2015) 5337-5340

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

## Synthesis of novel cyano quinoline derivatives

Salih Ökten<sup>a</sup>, Osman Çakmak<sup>b,\*</sup>

<sup>a</sup> Department of Primary Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450 Yahşihan, Kırıkkale, Turkey <sup>b</sup> Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, 34210 Davutpaşa, İstanbul, Turkey

#### ARTICLE INFO

ABSTRACT

Article history: Received 22 January 2015 Revised 15 July 2015 Accepted 30 July 2015 Available online 5 August 2015

*Keywords:* Quinoline Bromo quinoline Cyano quinoline Bromination

### Introduction

The quinoline moiety forms the key skeleton of several natural and pharmacologically active compounds which display a broad spectrum of biological activities.<sup>1-4</sup> Notably, cyano quinoline compounds substituted at the C-3 position can act to deactivate the action of growth factor receptor protein tyrosine kinases.<sup>5-8</sup> Agents with cyano groups also act as small molecule inhibitors, binding with biological systems.<sup>9</sup> A significant body of work has been reported on the synthesis and derivatization of the quinoline substructure. The most common strategies are cyclization reactions of *N*-functionalized benzene or cyclohexane.<sup>10-13</sup> The asymmetric syntheses of 2-cyano substituted dihydro and tetrahydroquinolines have been accomplished using the Reissert reaction<sup>14</sup> while 8-cyano substituted guinoline compounds have been synthesized by the treatment of cyano aniline with ketone functionalized alkynes in polar solvents.<sup>15</sup> However, cyclizations using cyano substituted N-functionalized aromatics, allow only the synthesis of mono cyano substituted quinolines.<sup>16</sup> Due to this, the synthesis of poly cyano substituted quinolines has been restricted.

The work presented is a continuation of our ongoing research<sup>17,18</sup> and focuses on the synthesis of polysubstituted quinolines, starting from substituted 1,2,3,4-tetrahydroquinoline 5, which provides an efficient synthesis of C-3 bromoderivatives 6 (Scheme 1). Herein, we present preliminary results focused on the generality and application of this strategy.

### **Results and discussions**

6,8-Dibromo-1,2,3,4-tetrahydroquinoline (2) and 3,6,8-tribromoquinoline (3) were converted into the

corresponding cyano derivatives via copper assisted nucleophilic substitution reactions. While bromina-

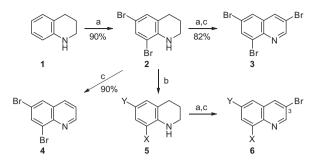
tion of 6-bromo-8-cyanotetrahydroquinoline (11) gave 3,6-dibromo-8-cyanoquinoline (8), the reaction of

dicyano-1,2,3,4-tetrahydroquinoline (12) resulted in the formation of an unexpected dimer (15).

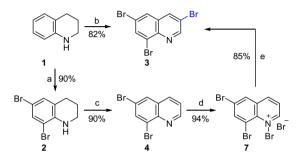
Previously, we have reported the one pot synthesis of 3,6,8tribromoquinoline **3** by bromination of 6,8-dibromo-1,2,3,4tetrahydroquinoline **2** which proceeded in high yield (90%).<sup>19</sup> As a continuation of this, we initially studied in detail both this reaction and alternative approaches towards the synthesis of **3**. Interestingly, 1,2,3,4-tetrahydroquinoline **1** was found to react with 5 equiv of bromine at ambient temperature to afford the 3,6,8-tribromoquinoline **3** in good yield (82%) (Scheme 2). As an alternate method for the synthesis of **3**, 6,8-dibromoquinoline **4**<sup>17,20</sup> was brominated using Eisch's procedure.<sup>21</sup> It is proposed that 6,8-dibromoquinoline **4** initially reacts to produce bromine salt **7** which upon heating at reflux in the presence of pyridine undergoes conversion to 3,6,8-tribromoquinoline **3** via substitution at the C-3 position (Scheme 2).

In our previous publication,<sup>18</sup> the copper induced cyanation of 6,8-dibromoquinoline **4** was investigated and we initially applied the same strategy to 3,6,8-tribromoquinoline **3** (Scheme 3) and 6,8-dibromo-1,2,3,4-tetrahydroquinoline **2** (Scheme 4). Tribromo compound **3** was reacted with CuCN in refluxing DMF to afford a mixture of cyanoquinolines **8**, **9** and **10** (Scheme 3). The effect of reaction duration on the product ratio was investigated and it was observed that a reaction time of 6 h gave monocyanide **8** in good yield (76%, entry 1), whereas prolonged reaction times (14 h) yielded a mixture of cyanoquinolines **9** and **10** (entry 2). Gratifyingly after 24 h, tricyanide **10** was obtained as the sole product albeit in low yield (36%, entry 3).

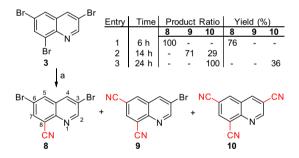
The low yield of **10** could be explained by the longer reaction time which caused polymerization/decomposition of tricyanide



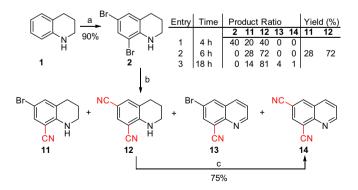



© 2015 Elsevier Ltd. All rights reserved.


<sup>\*</sup> Corresponding author. Tel.: +90 212 383 4224; fax: +90 212 383 4234. *E-mail address:* ocakmak@yildiz.edu.tr (O. Çakmak).




**Scheme 1.** Approaches to the synthesis and functionalization of quinoline and hydroquinoline derivatives. (a) bromination; (b) substitution; (c) aromatization.



**Scheme 2.** Reagents and conditions (a)  $Br_2$  (2 equiv),  $CHCl_3$ , dark, 2 h, rt; (b)  $Br_2$  (5 equiv),  $CHCl_3$ , dark, 3 d, rt; (c) DDQ (2.5 equiv), benzene, 3 h, reflux; (d)  $Br_2$  (1 equiv),  $CCl_4$ , 3 h, rt; (e) pyridine (1 equiv), reflux, 15 h.



Scheme 3. Reagents and conditions (a) CuCN (6 equiv), DMF, reflux.



**Scheme 4.** Reagents and conditions (a) Br<sub>2</sub> (2 equiv), CH<sub>2</sub>Cl<sub>2</sub>, dark, 2 h, rt; (b); CuCN (4 equiv), DMF, reflux; (c) DDQ, benzene, 44 h, reflux.

**10**. Interestingly, the first substitution occurred at the C-8 position instead of C-3 as expected, which was potentially assisted by Cu-N complexation. The <sup>1</sup>H NMR of **10** displayed similar signals to

tribromide **3**, except they were shifted to a higher field. In the <sup>1</sup>H NMR spectra of 3,6,8-tricyanoquinoline **10**, a downfield shift for H-2 ( $\delta_{\rm H}$  9.36, d,  $J_{2,4}$  = 1.6 Hz) was observed which was characteristic for a quinoline ring; the doublet of H-4 was observed at  $\delta_{\rm H}$  8.74 ( $J_{4,2}$  = 1.6 Hz). Two signals with meta coupling at  $\delta_{\rm H}$  8.56 and 8.45 ( $J_{5,7}$  = 2.0 Hz), belonging to H-5 and H-7, respectively, were also in good agreement with the proposed structure. The <sup>13</sup>C NMR spectra of **10**, consisted of twelve sp<sup>2</sup> resonances, eight of which were quaternary carbons. <sup>1</sup>H NMR of all compounds are listed in Table 1.

The structure of cyanides 8 and 9 were determined by <sup>1</sup>H and <sup>13</sup>C NMR, 2D NMR (HMBC, HETCOR), and elemental analysis. The <sup>1</sup>H NMR spectrum of dibromide **8** consisted of four signals (Table 1). The resonance for H-2 appeared at  $\delta$  9.05 with a coupling constant value ( $J_{2,4} = J_{5,7} = 1.6 \text{ Hz}$ ), which is characteristic for a quinoline ring. Meta coupling doublets for H-5 and H-7 ( $\delta_{\rm H}$  8.19, 8.34, respectively,  $J_{5,7}$  = 1.6 Hz) as well as H-2 and H-4 ( $\delta_{\rm H}$  9.04, 8.16, respectively,  $J_{2,4}$  = 1.6 Hz) were evidence for the position of the two bromine substituents. 2D NMR was used to establish the position of the cyano groups in both 8 and 9. For example, in the HBMC spectra of **8**, the cyano carbon atom ( $\delta_{\rm H}$  115.2) correlated with H-7 ( $\delta_{\rm H}$  8.34 ppm) but did not correlate with H-5 ( $\delta_{\rm H}$ 8.19 ppm) confirming that the cyano group was substituted at C-8. Highly downfield shifts were evidence that the compound contained a cyano group. The <sup>13</sup>C NMR studies of compound **8** displayed ten resonances of which six signals were quaternary which was in accordance with the aromatic skeleton being tri substituted.

When 6,8-dibromo-1,2,3,4-tetrahydroquinoline **2** was treated with CuCN in refluxing DMF, the <sup>1</sup>H NMR spectrum indicated formation of a mixture of cyano tetrahydroquinolines (**11**, **12**) and quinolines (**13**, **14**) which varied in composition by reaction time. It was observed that after 4 h, two cyano tetrahydroquinoline derivatives **11** and **12** had formed in a 20:40 ratio (conversion 60%, entry 1), as assigned by <sup>1</sup>H NMR spectroscopy. The starting material was consumed in 6 h (entry 2) giving **11** and **12** in a

Table 1Summary of the <sup>1</sup>H NMR data of compounds 8-14

| Compound | $\delta_{H}$ |      |               |       |      | J = (Hz)/other        |
|----------|--------------|------|---------------|-------|------|-----------------------|
|          | H-2          | H-3  | H-4           | H-5   | H-7  | signals               |
| 8        | 9.05         | -    | 8.16          | 8.19. | 8.34 | $J_{2,4} = 1.6$ ,     |
|          | (d)          |      | (d)           | (d)   | (d)  | $J_{7.5} = 1.6$       |
| 9        | 9.23         | -    | 8.57          | 8.37  | 8.33 | $J_{2,4} = 2.0,$      |
|          | (d)          |      | (d)           | (d)   | (d)  | $J_{5,7} = 2.0$       |
| 10       | 9.36         | _    | 8.74          | 8.56  | 8.45 | $J_{2,4} = 1.6$ ,     |
|          | (d)          |      | (d)           | (d)   | (d)  | $J_{5,7} = 2.0$       |
| 11       | 3.42         | 1.93 | 2.74          | 7.16  | 7.28 | $J_{2,3} = 4.4,$      |
|          | (t)          | (m)  | (t)           | (d)   | (d)  | $J_{4,3} = 6.4$       |
|          |              |      |               |       |      | $J_{7,5} = 2.0; 4.87$ |
|          |              |      |               |       |      | (s) NH                |
| 12       | 3.50         | 1.97 | 2.78          | 7.50  | 7.29 | $J_{2,3} = 6.4$ ,     |
|          | (t)          | (m)  | (t)           | (s)   | (s)  | $J_{4,3} = 6.0$       |
|          |              |      |               |       |      | 5.48 (s) NH           |
| 13       | 9.08         | 7.58 | 8.17-8.22 (m) |       |      | $J_{2,3} = 4.0,$      |
|          | (d)          | (dd) |               |       |      | $J_{3,4} = 8.0$       |
| 14       | 9.27         | 7.74 | 8.36          | 8.50  | 8.30 | $J_{2,3} = 4.0,$      |
|          | (dd)         | (dd) | (dd)          | (d)   | (d)  | $J_{3,4} = 8.0$       |
|          |              |      |               |       |      | $J_{2,4} = 1.6$ ,     |
|          |              |      |               |       |      | $J_{7,5} = 1.6$       |



Scheme 5. Reagents and conditions (a) Br<sub>2</sub> (3 equiv), CHCl<sub>3</sub>, dark, rt, 2 d.

Download English Version:

# https://daneshyari.com/en/article/5261734

Download Persian Version:

https://daneshyari.com/article/5261734

Daneshyari.com