ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Studies toward the synthesis of cinachyramine. An efficient route to 1,5-diazabicyclo[4.4.0]dec-5-enes

Olga V. Barykina-Tassa, Barry B. Snider *

Department of Chemistry MS 015, Brandeis University, Waltham, MA 02454-9110, USA

ARTICLE INFO

Article history:
Received 19 November 2014
Revised 11 December 2014
Accepted 12 December 2014
Available online 22 December 2014

Dedicated to the memory of Professor Harry H. Wasserman

Keywords: 1,5-Diazabicyclo[4.4.0]dec-5-enes Pyrido[1,2-a]pyrimidines Hydrogenation Hydrazones 1,5-Hydrogen shifts

ABSTRACT

Hydrogenation (3 atm) of readily available pyrido[1,2-a]pyrimidines **10**, **14**, and **17** over 5% Rh/Al₂O₃ forms 1,5-diazabicyclo[4.4.0]dec-5-enes **9**, **15**, and **18** in >95% yield, providing a general route to this little-studied class of compounds. All attempts to form the tetrahydro-1,2,4-triazine moiety of cinachyramine (**1**) by rearrangement of amidinium dimethylhydrazone **8** using the procedures developed by Kamatori to convert hydrazone **3a** to tetrahydro-1,2,4-triazine **4a** were unsuccessful.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Cinachyramine (1), a novel alkaloid possessing a hydrazone and two aminals, was isolated in 2006 from the Okinawan sponge Cinachyrella sp. (see Scheme 1). The structure was assigned by spectroscopic analysis and degradation under acidic conditions to afford azoalkene 2. Cinachyramine trifluoroacetate showed weak cytotoxic activity against HeLa S_3 cells with an IC_{50} of $6.8 \mu g/mL$. The structural novelty of cinachyramine and our continuing interest in amidine- and guanidine-containing natural products prompted us to attempt its synthesis.

Kamatori and co-workers reported an extensive series of studies on the rearrangements of the dimethylhydrazones of 1,1,1-trifluoro-2,3-diones such as **3a** (see Scheme 2).² Heating **3a** absorbed on silica gel with ammonium acetate (50 equiv) at 60 °C for 2 days afforded **4a** (36%) with the same tetrahydro-1,2,4-triazine ring as cinachyramine.^{2c} The mechanism probably involves imine formation and protonation to give **5a**, which can also be drawn as the resonance structure **6a**. A 1,5-sigmatropic hydrogen shift will give iminium salt **7a**, which will cyclize to give **4a** after deprotonation.

We hoped that amidinium dimethylhydrazone **8** would undergo a similar 1,5-sigmatropic hydrogen shift followed by cyclization to give cinachyramine (1) (see Scheme 3). This route

was particularly appealing because the conditions are mild enough for a similar sequence to occur in the biosynthesis of **1**. We expected that oxidation of the hydroxy group of **9** to a ketone and hydrazone formation would lead to **8**. We thought that hydroxy amidinium salt **9** should be available by partial hydrogenation of the readily available pyrido[1,2-*a*]pyrimidinium salt **10**.^{3,4}

Results and discussion

Reaction of 2-amino-3-hydroxypyridine (11) with 1,1,3,3-tetraethoxypropane in 60% perchloric acid and ethanol at 80 °C by the literature procedure led to the formation of 10 which precipitated from solution and was isolated in pure form in 85% yield by filtration (see Scheme 4).⁴ We were delighted to find that hydrogenation⁵ of 10 under 3 atm of H_2 over 5% Rh/Al_2O_3 provided 9 as the

Scheme 1. Structure and decomposition product of cinachyramine (1).

^{*} Corresponding author. Tel.: +1 781 736 2550; fax: +1 781 736 2516. E-mail address: snider@brandeis.edu (B.B. Snider).

Scheme 2. Conversion of hydrazone **3** to tetrahydro-1,2,4-triazine **4**.

$$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CIO}_4 \\ \text{CIO}_4 \\ \text{CIO}_4 \\ \text{OH} \\ \text{CIO}_4 \\ \text{OH} \\ \text{IO} \\ \text{OH} \\ \text{OH$$

Scheme 3. Retrosynthesis of cinachyramine (1).

perchlorate salt in 97% yield. Oxidation of the hydroxy group in $\bf 9$ with Jones reagent gave oxo amidinium perchlorate salt $\bf 12$ in 42% yield. Although the amidinium salt is quite stable, deprotonation with K_2CO_3 or NaOH led to partial hydrolysis of the unprotonated amidine. Consistent with this observation, the Swern oxidation and other neutral or basic oxidation procedures were unsuccessful. Therefore, Jones oxidation was the method of choice despite the moderate yield.

The structure of **12** was confirmed by X-ray crystal structure analysis (see Fig. 1), which also established that the perchlorate ion was tightly bound and did not exchange with the sulfate ion from the sulfuric acid in the Jones oxidation.⁶ It should also be noted that oxo amidinium cation **12** appeared to slowly equilibrate with the hemiketal during prolonged storage in CD₃OD solution.⁷

Oxo amidinium perchlorate **12** was stirred in excess 1, 1-dimethylhydrazine for 4 h to afford hydrazone salt **8** in quantitative yield. With the key intermediate **8** in hand we began to investigate the 1,5-sigmatropic hydrogen shift and cyclization needed to complete the synthesis of cinachyramine (**1**). Unfortunately, no reaction occurred on heating **8** in the presence of silica gel with or without NH₄OAc in an oil bath or in a MW oven at 70–100 °C. No reaction occurred in TFA at 25 °C or on microwave heating with silica gel prior to decomposition at 250 °C.

To verify that we were carrying out the reaction properly, trifluoroacetyl hydrazone ${\bf 3b}$ was prepared by the literature procedure. ^{2a,b} Heating ${\bf 3b}$ with NH₄OAc in the presence of silica in the MW oven for 1 h cleanly afforded a 1.7:1 mixture of

Scheme 4. Synthesis of amidinium hydrazone 8.

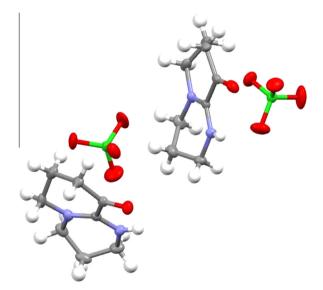


Figure 1. Crystal structure of oxo amidinium perchlorate 12.

tetrahydro-1,2,4-triazine **4b** and the analogous tetrahydro oxadiazine resulting from a 1,5-sigmatropic hydrogen shift prior to imine formation. Therefore the facile 1,5-sigmatropic hydrogen shift that occurs with the trifluoromethyliminium dimethylhydrazone cation **5** does not occur under the same conditions with amidinium dimethylhydrazone **8**. Presumably the trifluoromethyliminium cation of **5** is much more acidic and therefore more reactive than the amidinium cation of **8**.

We briefly investigated other procedures for the conversion of $\bf 8$ to cinachyramine (1). No reaction occurred on irradiation with 300 or 350 nm UV light in CD₃OD or D₂O. Treating $\bf 8$ with a wide range of bases either gave recovered $\bf 8$ or extensive decomposition without any evidence for the formation of cinachyramine (1).

Although this approach to cinachyramine was not successful, the hydrogenation of **10** provides a very simple and practical route

Download English Version:

https://daneshyari.com/en/article/5261971

Download Persian Version:

https://daneshyari.com/article/5261971

<u>Daneshyari.com</u>