ARTICLE IN PRESS

Tetrahedron Letters xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

etrahedro

Pd(II)-catalyzed diastereoselective and enantioselective domino cyclization/cycloaddition reactions of alkenyl oximes for polycyclic heterocycles with four chiral stereogenic centers

Mohamed A. Abozeid, Shinobu Takizawa*, Hiroaki Sasai

The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan

ARTICLE INFO

Article history: Received 20 March 2015 Revised 14 May 2015 Accepted 19 May 2015 Available online xxxx

Keywords: Stereoselective reaction Domino reaction Cyclization Cycloaddition Isoxazolidine

ABSTRACT

Diastereoselective and enantioselective domino cyclization/cycloaddition reactions of alkenyl oximes were established using a Pd(II)-(R)-Tol-SDP complex and triflic acid. The present process gave polycyclic heterocycles with four chiral stereogenic centers in almost quantitative yields and high stereoselectivities (up to 70% ee, *exo/endo* = 97/3).

© 2015 Elsevier Ltd. All rights reserved.

The development of a facile construction of polycyclic heterocycles is a subject of intensive research because of their potential use in medicinal chemistry.^{1,2} Among them, domino cyclization has become a powerful strategy for the formation of two or more rings in a single operation. In the domino cyclization, multiple chiral centers can often be formed with high stereoselectivities.² Nitrones derived from the reaction of oximes and alkenes are widely used 1,3-dipoles that endure cycloadditions with alkenes affording versatile isoxazolidine derivatives.³ In 1994, Grigg et al. developed Pd(II)-catalyzed cyclization/cycloaddition cascade reaction of alkenyl oximes, effectively furnishing isoxazolidines with multiple stereocenters.⁴ Despite the potential of this transformation, no enantioselective domino cyclization process has been reported.⁵ Herein, we present the first enantioselective protocol of a cyclization/cycloaddition sequence of alkenyl oxime (E)-1 with enedione **2** catalyzed by a Pd(II)-(R)-Tol-SDP complex and triflic acid (TfOH) (Scheme 1).

With the aim of developing a diastereoselective and enantioselective cyclization/cycloaddition sequence, the reaction of alkenyl oxime (*E*)-**1a** and *N*-methyl maleimide (**2a**) as prototypical substrates was attempted (Table 1).⁴ Although a chiral complex derived from PdCl₂(MeCN)₂ with (*S*)-BINAP was used, no desired cyclic product **3a** was obtained. ESI-MS studies of the reaction

http://dx.doi.org/10.1016/j.tetlet.2015.05.070 0040-4039/© 2015 Elsevier Ltd. All rights reserved.

Scheme 1. Pd(II)-catalyzed diastereoselective and enantioselective domino cyclization/cycloaddition reaction of alkenyl oxime **1** and enedione **2**.

indicated the formation of intermediate $4^{4,6}$ To promote the protonolysis of the Pd–C bond in **4** that lead to the domino process, various Bronsted acids as proton sources were employed. Among the acids tested (HClO₄, HCl_{aq}, p-Tol-SO₃H, CF₃CO₂H, $o-NO_2-C_6H_4-CO_2H$, HCO₂H, and AcOH), the addition of TfOH was found to promote the domino process effectively, resulting in the formation of 3a with 70% yields in the ratio of exo/endo-3a to 93/7; the exo-cycloadduct 3a was obtained as a major product in 37% enantiomeric excess (ee) (entry 2). Encouraged by these results, we further studied the effects of other reaction conditions such as solvents, Pd salts, a ratio of substrates, and temperature. The use of CHCl₃ as a reaction solvent resulted in the formation of 3a with 46% ee (entry 4). Chiral Pd complexes prepared from Pd(acac)₂ with (S)-BINAP were found to give **3a** in higher enantioselectivity (55% ee, entry 7) than those prepared from other Pd salts. The optimal result (quant, exo/endo = 93/7, 56% ee) with

^{*} Corresponding author. Tel.: +81 6 6879 8466; fax: +81 6 6879 8469. E-mail address: taki@sanken.osaka-u.ac.jp (S. Takizawa).

ARTICLE IN PRESS

M. A. Abozeid et al. / Tetrahedron Letters xxx (2015) xxx-xxx

2

Table 1

Screening of reaction conditions^a

6

10

CHCl₃

CHCl₃

^a Isolated yield.

^b Determined by HPLC.

^c In the absence of TfOH.

_

 $^{\rm d}\,$ At 45 °C.

9

10^d

Table 2

Pd(acac)₂

Pd(acac)₂

Screening of chiral ligands^a

2:1

2:1

Chiral ligand (15 mol %) Pd(acac)₂ (10 mol %) TfOH (20 mol %) 1a + 2a 3a CHCI₃, 45°C

83

Quant

91/9

93/7

46

56

Entry	Chiral ligand	Time (h)	Total yields of 3a (%) ^a	Ratio of <i>exo/endo-</i> 3a (%) ^b	ee of <i>exo-</i> 3a (%) ^b
1	(S)-Tol-BINAP	10	94	92:8	46
2	(R) - C_3 -Tunephos	15	43	92:8	-55 ^c
3	(R)-Segphos	15	Quant	92:8	-58 ^c
4	(R)-SDP	8	72	92:8	62
5	(R)-Tol-SDP	8	Quant	94:6	70
6	(R)-Xyl-SDP	8	Quant	90:10	48
7	(S)-MOP	15	78	93:7	0
8	(S,S)-t-Bu-BOX	12	78	93:7	0
9	(P,R,R)-i-Pr-SPRIX	12	92	90:10	4

^a Isolated yield.

^b determined by HPLC.

^c Opposite enantiomer was obtained.

Please cite this article in press as: Abozeid, M. A.; et al. Tetrahedron Lett. (2015), http://dx.doi.org/10.1016/j.tetlet.2015.05.070

Download English Version:

https://daneshyari.com/en/article/5262304

Download Persian Version:

https://daneshyari.com/article/5262304

Daneshyari.com