Pd(II)-catalyzed diastereoselective and enantioselective domino cyclization/cycloaddition reactions of alkenyl oximes for polycyclic heterocycles with four chiral stereogenic centers

Mohamed A. Abozeid, Shinobu Takizawa*, Hiroaki Sasai
The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan

A R T I C L E I N F O

Article history:

Received 20 March 2015
Revised 14 May 2015
Accepted 19 May 2015
Available online xxxx

Keywords:

Stereoselective reaction
Domino reaction
Cyclization
Cycloaddition
Isoxazolidine

Abstract

Diastereoselective and enantioselective domino cyclization/cycloaddition reactions of alkenyl oximes were established using a $\mathrm{Pd}(\mathrm{II})-(R)$-Tol-SDP complex and triflic acid. The present process gave polycyclic heterocycles with four chiral stereogenic centers in almost quantitative yields and high stereoselectivities (up to 70% ee, exo/endo $=97 / 3$).

© 2015 Elsevier Ltd. All rights reserved.

The development of a facile construction of polycyclic heterocycles is a subject of intensive research because of their potential use in medicinal chemistry. ${ }^{1,2}$ Among them, domino cyclization has become a powerful strategy for the formation of two or more rings in a single operation. In the domino cyclization, multiple chiral centers can often be formed with high stereoselectivities. ${ }^{2}$ Nitrones derived from the reaction of oximes and alkenes are widely used 1,3-dipoles that endure cycloadditions with alkenes affording versatile isoxazolidine derivatives. ${ }^{3}$ In 1994, Grigg et al. developed Pd(II)-catalyzed cyclization/cycloaddition cascade reaction of alkenyl oximes, effectively furnishing isoxazolidines with multiple stereocenters. ${ }^{4}$ Despite the potential of this transformation, no enantioselective domino cyclization process has been reported. ${ }^{5}$ Herein, we present the first enantioselective protocol of a cyclization/cycloaddition sequence of alkenyl oxime $(E)-\mathbf{1}$ with enedione 2 catalyzed by a $\operatorname{Pd}(\mathrm{II})-(R)$-Tol-SDP complex and triflic acid (TfOH) (Scheme 1).

With the aim of developing a diastereoselective and enantioselective cyclization/cycloaddition sequence, the reaction of alkenyl oxime (E)-1a and N-methyl maleimide (2a) as prototypical substrates was attempted (Table 1). ${ }^{4}$ Although a chiral complex derived from $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ with (S)-BINAP was used, no desired cyclic product 3a was obtained. ESI-MS studies of the reaction

[^0]

Scheme 1. Pd(II)-catalyzed diastereoselective and enantioselective domino cyclization/cycloaddition reaction of alkenyl oxime $\mathbf{1}$ and enedione $\mathbf{2}$.
indicated the formation of intermediate $4^{4,6}$ To promote the protonolysis of the $\mathrm{Pd}-\mathrm{C}$ bond in $\mathbf{4}$ that lead to the domino process, various $\mathrm{Br} \phi$ nsted acids as proton sources were employed. Among the acids tested $\left(\mathrm{HClO}_{4}, \mathrm{HCl}_{\mathrm{aq}}, p\right.$ - $\mathrm{Tol}-\mathrm{SO}_{3} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, $o-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}_{2} \mathrm{H}, \mathrm{HCO}_{2} \mathrm{H}$, and AcOH), the addition of TfOH was found to promote the domino process effectively, resulting in the formation of 3a with 70% yields in the ratio of exo/endo-3a to 93/7; the exo-cycloadduct 3a was obtained as a major product in 37\% enantiomeric excess (ee) (entry 2). Encouraged by these results, we further studied the effects of other reaction conditions such as solvents, Pd salts, a ratio of substrates, and temperature. The use of CHCl_{3} as a reaction solvent resulted in the formation of 3a with 46% ee (entry 4). Chiral Pd complexes prepared from $\operatorname{Pd}(\mathrm{acac})_{2}$ with (S)-BINAP were found to give 3a in higher enantioselectivity (55% ee, entry 7) than those prepared from other Pd salts. The optimal result (quant, exo/endo $=93 / 7,56 \%$ ee) with

Table 1
Screening of reaction conditions ${ }^{\text {a }}$

	 1a		(S)-BINAP (15 mol \%) Pd salt ($10 \mathrm{~mol} \%$) TfOH (20 mol \%) reflux		$\left(X=C I, L_{n}=\mathrm{BINAP}\right)$		
Entry	Pd salt	Ratio (1a:2a)	Solvent	Time (h)	Total yields of 3a (\%) ${ }^{\text {a }}$	Ratio of exo/endo-3a ${ }^{\text {b }}$	ee of exo-3a (\%) ${ }^{\text {b }}$
1	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	1:1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	Trace ${ }^{\text {c }}$	-	-
2	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	1:1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	70	93/7	37
3	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	1:1	THF	6	64	91/9	37
4	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	1:1	CHCl_{3}	6	60	92/8	46
5	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$	1:1	CHCl_{3}	6	79	90/10	47
6	$\mathrm{PdCl}_{2}(\mathrm{COD})$	1:1	CHCl_{3}	6	85	91/9	46
7	$\mathrm{Pd}(\mathrm{acac})_{2}$	1:1	CHCl_{3}	6	67	91/9	55
8	$\mathrm{Pd}(\mathrm{acac})_{2}$	1:2	CHCl_{3}	6	36	92/8	41
9	$\mathrm{Pd}(\mathrm{acac})_{2}$	2:1	CHCl_{3}	6	83	91/9	46
$10^{\text {d }}$	$\mathrm{Pd}(\mathrm{acac})_{2}$	2:1	CHCl_{3}	10	Quant	93/7	56

${ }^{\text {a }}$ Isolated yield.
${ }^{b}$ Determined by HPLC.
${ }^{\text {c }}$ In the absence of TfOH.
${ }^{\mathrm{d}}$ At $45^{\circ} \mathrm{C}$.

Table 2
Screening of chiral ligands ${ }^{\text {a }}$
1a+2a $\xrightarrow[\mathrm{CHCl}_{3}, 45^{\circ} \mathrm{C}]{\substack{\text { Chiral ligand (15 mol \%) } \\ \mathrm{Pd} \text { acac) })_{2}(10 \mathrm{~mol} \%) \\ \mathrm{TfOH}(20 \mathrm{~mol} \%)}}$ 3a

Entry	Chiral ligand	Time (h)	Total yields of 3a (\%) ${ }^{\text {a }}$	Ratio of exo/endo-3a (\%) ${ }^{\text {b }}$	ee of exo-3a (\%) ${ }^{\text {b }}$
1	(S)-Tol-BINAP	10	94	92:8	46
2	(R)- C_{3}-Tunephos	15	43	92:8	$-55^{\text {c }}$
3	(R)-Segphos	15	Quant	92:8	$-58^{\text {c }}$
4	(R)-SDP	8	72	92:8	62
5	(R)-Tol-SDP	8	Quant	94:6	70
6	(R)-Xyl-SDP	8	Quant	90:10	48
7	(S)-MOP	15	78	93:7	0
8	(S, S)-t-Bu-BOX	12	78	93:7	0
9	$(P, R, R)-i-\mathrm{Pr}$-SPRIX	12	92	90:10	4

[^1]determined by HPLC.
c Opposite enantiomer was obtained.

(S)-Tol-BINAP
(R)-C ${ }_{3}$-Tunephos
(R)-Segphos

(R)-SDP

(R)-Tol-SDP

(S)-MOP

(S,S)-t-Bu-BOX

(P, R, R)-iPr-SPRIX

https://daneshyari.com/en/article/5262304

Download Persian Version:
https://daneshyari.com/article/5262304

Daneshyari.com

[^0]: * Corresponding author. Tel.: +81 66879 8466; fax: +81 668798469.

 E-mail address: taki@sanken.osaka-u.ac.jp (S. Takizawa).

[^1]: ${ }^{\text {a }}$ Isolated yield.

