ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

AlCl₃-catalyzed insertion of isocyanides into nitrogen-sulfur bonds of sulfenamides

Daisuke Shiro ^a, Shin-ichi Fujiwara ^{b,*}, Susumu Tsuda ^b, Takanori Iwasaki ^a, Hitoshi Kuniyasu ^a, Nobuaki Kambe ^{a,*}

ARTICLE INFO

Article history: Received 9 December 2014 Revised 10 January 2015 Accepted 14 January 2015 Available online 7 February 2015

Keywords: Insertion Sulfenamide Isocyanide Isothiourea Lewis acid

ABSTRACT

Lewis acid-catalyzed insertion of isocyanides **2** into nitrogen–sulfur bonds of sulfenamides **1** was developed. This method provided a convenient method for the synthesis of isothioureas **3**. Among Lewis acids examined, AlCl₃ brought about the best result. Acetic acid assisted one-pot preparation of unsymmetrical ureas was also described.

© 2015 Published by Elsevier Ltd.

Introduction

Sulfenamides, R₂NSR', are synthetically interesting and important compounds due to their wide availability^{1,2} and the unique reactivity of the N–S bond.¹ Sulfenamides have been utilized as aminating reagents³ and sulfenyating reagents⁴ in addition to as aminyl radical precursors⁵ and catalysts for the oxidation of alcohols.⁶ Furthermore, unsaturated molecules such as carbon monoxide and alkynes can be inserted into the N–S bond of sulfenamides. For example, Kurosawa and co-workers revealed for the first time in 1999 that the reaction of sulfenamides with carbon monoxide was catalyzed by Pd(PPh₃)₄ in pyridine to provide thiocarbamates in high yields (Scheme 1, Eq. 1).^{7,8} Mitsudo and co-workers disclosed that the reaction of sulfenamides with alkynes was catalyzed by [RuCl₂(CO)₂]₂ in DMF to provide the corresponding adducts with high regio- and stereoselectivity (Scheme 1, Eq. 2).^{9–13}

Here we wish to report that AlCl₃ catalyzes insertion of isocyanides **2** into N–S bonds of sulfenamides **1** giving rise to the formation of isothioureas **3** (Scheme 2).

$$R_2 NSAr + R^1 = R^2 \xrightarrow{\begin{array}{c} [RuCl_2(CO)_2]_2 \\ (5 \text{ mol}\%) \end{array}} ArS NR_2$$

$$2 \text{ equiv} \qquad \begin{array}{c} DMF \\ 40 \text{ °C, 6 h} \end{array}$$

Scheme 1. Insertion of CO and alkynes into sulfenamides.

$$R_2NSAr + R'NC$$

$$\frac{AICl_3 (30 \text{ mol}\%)}{\text{toluene}} Et_2N SAr$$

$$80 °C, 2 \text{ h}$$

Scheme 2. AlCl₃-catalyzed syntheses of isothioureas from isocyanides and sulfenamides.

Results and discussions

It was reported that thiophthalimides reacted with isocyanides without a catalyst in refluxing acetonitrile to give insertion products. ¹⁴ However, when we heated a mixture of *S*-phenyl-*N*,*N*-diethylsulfenamide **1a** and 2,6-xylyl isocyanide **2a** in acetonitrile

^a Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

^b Department of Chemistry, Osaka Dental University, Hirakata, Osaka 573-1121, Japan

^{*} Corresponding authors. Tel.:+81 72 8643022; fax: +81 72 8643122 (S.F.); tel.: +81 6 68797388; fax: +81 6 68797391 (N.K.).

E-mail addresses: fujiwara@cc.osaka-dent.ac.jp (S.-i. Fujiwara), kambe@chem. eng.osaka-u.ac.jp (N. Kambe).

R₀N—SAr

+ R'NC

$$Et_2NSPh + XyNC \xrightarrow{\begin{array}{c} Pd(PPh_3)_4 \\ (5 \text{ mol}\%) \\ \hline pyridine \\ 80 \ ^{\circ}C, \ 14 \ h \end{array}} \xrightarrow{\begin{array}{c} NXy \\ Et_2N \ ^{\circ}SPh \end{array}} + \xrightarrow{\begin{array}{c} O \\ Et_2N \ ^{\circ}NHXy \\ \hline NHXy \\ SPh \end{array}$$

Scheme 3. Reaction of a sulfenamide with an isocyanide in the presence of $Pd(PPh_3)_4$.

SEt R SEt + ArNC
$$\frac{GaCl_3 \text{ or}}{toluene}$$

$$Ar = 2.6-dichlorophenyl$$

$$\frac{GaCl_3 \text{ or}}{toluene}$$

$$30 ^{\circ}C, 2 \text{ h}$$

$$R R$$

Scheme 4. Lewis acid-catalyzed insertion of isocyanides to a C-S bond of dithioacetals

Table 1Screening of Lewis acids

	or Ecwis delas	Lewis acid (10 mol%)		NXy	Q.	
1a , 2 equi	+ XyNC -	solvent 80 °C, time	Et ₂ N (SPh + E	Et ₂ N NHXy	
run	Lewis acid	solvent	time	yiel 3a , % ^{a,b}	d 4a , % ^{a,b}	
1	GaCl ₃	DMF	24 h	72	8	
2	TiCl ₄	DMF	24 h	32	50	
3	InCl ₄	DMF	24 h	72	9	
4	AICI ₃	DMF	24 h	72	2	
5	ZrCl ₄	DMF	24 h	70	14	
6	BBu ₃	DMF	24 h	58	9	
7	BPh ₃	DMF	24 h	72	4	
8	B(C ₆ F ₅) ₃	DMF	24 h	66	14	
9	BF ₃ •OEt ₂	DMF	24 h	72	10	
10 ^c	CH ₃ COOH	DMF	30 h	6	79 (78)	
11 ^d	AICI ₃	DMF	24 h	75	3	
12 ^d	AICI ₃	toluene	24 h	81	n.d.	
13 ^{d, e}	AICI ₃	toluene	2 h	80 (77)	n.d.	

Conditions: **2a** (0.4 mmol), **1a** (2 equiv), Lewis acid (1 equiv), solvent (0.4 mL). ^a NMR yields. ^b Isolated yield in parentheses. ^cCH₃COOH (1 equiv). ^d AICl₃ (30 mol%). ^e **1a** (1 equiv).

under similar conditions, insertion reaction did not proceed at all. Then we examined the palladium catalyzed system developed for azathiolation of carbon monoxide shown in Scheme 1. When a pyridine (0.4 mL) solution of sulfenamide $\bf 1a$ (0.4 mmol), isocyanide $\bf 2a$ (0.4 mmol), and Pd(PPh₃)₄ (5 mol %) was heated at 80 °C for

Table 2 AlCl₃-catalyzed reaction of isocyanides with sulfenamides leading to isothioureas

AICI₃ (30 mol%)

	2	toluer	R ₂ N´`SAr		
	1	2 80°C, 2	2 h 3		
run	sulfenamide	isocyanide	isothiourea	yield ^a	
1	NSPh	XyNC	NXy N SPh	79%	
	1b	2a	3b		
2	NSPh	2a	NXy N SPh	69%	
	1c		3с		
3	Et ₂ NS <i>p</i> -tol	2a	NXy Et ₂ N Sp-tol	70%	
	1d		3d		
4 ^b	Et₂NSPh	DippNC	NDipp Et₂N	78%	
	1a	2b	3e		
5 ^c	1a	p-MeOC ₆ H ₄ NC 2c	NC_6H_4 - p -OMe Et_2N SPh $3f$	47%	
6	1a	BnNC 2d	NBn Et₂N SPh 3g	93%	
7	1a	CyNC	NCy Et ₂ N SPh	35%	

Conditions: sulfenamide 1 (0.4 mmol), isocyanide 2 (0.4 mmol), AlCl₃ (30 mol%), toluene (0.4 mL), 80°C, 2 h. a Isolated yield. b DippNC = 2,6-diisopropylphenylisocyanide. c *p*-MeOC $_6$ H₄NC (2 equiv), 5 h.

14 h, desired isothiourea **3a** was not formed and the corresponding urea **4a**, a hydrolyzed product of **3a**, was obtained in 3% yield (Scheme 3). Even after several trials by the use of other metal catalysts such as Rh(PPh₃)₃Cl the yields of **3a** and **4a** were not improved so much.

Recently, Chatani and co-workers disclosed that isocyanides reacted with dithioacetals to give insertion products in the presence of Lewis acids such as GaCl₃ and TiCl₄ (Scheme 4).¹⁵

Then we conducted the reaction of sulfenamide **1a** with isocyanide **2a** in the presence of Lewis acids and the results are given in **Table 1**. When 2,6-xylyl isocyanide **2a** (0.4 mmol) was allowed to react with sulfenamide **1a** (2 equiv) in the presence of GaCl₃ (10 mol %) in DMF at 80 °C for 24 h, isothiourea **3a** was formed in 72% yield (run 1). In this reaction, 8% of urea **4a** was also obtained; however, multiple insertion products incorporating more than one isocyanide molecules were not detected. In the case of TiCl₄, urea **4a** became the major product (run 2). InCl₃, ZrCl₄, and BPh₃ exhibited similar activities as GaCl₃, and the use of AlCl₃ gave the best selectivity (runs 3–9). Interestingly, when 1 equiv of acetic acid was employed as an additive, urea **4a** was formed in 79% yield (run 10). Since 13% of isocyanide **2a** remained unreacted in run 4, we used 30 mol % of AlCl₃ but the yield of **3a** was improved only

Download English Version:

https://daneshyari.com/en/article/5262344

Download Persian Version:

https://daneshyari.com/article/5262344

<u>Daneshyari.com</u>