ELSEVIER Contents lists available at ScienceDirect ### **Tetrahedron Letters** journal homepage: www.elsevier.com/locate/tetlet # AlCl₃-catalyzed insertion of isocyanides into nitrogen-sulfur bonds of sulfenamides Daisuke Shiro ^a, Shin-ichi Fujiwara ^{b,*}, Susumu Tsuda ^b, Takanori Iwasaki ^a, Hitoshi Kuniyasu ^a, Nobuaki Kambe ^{a,*} #### ARTICLE INFO Article history: Received 9 December 2014 Revised 10 January 2015 Accepted 14 January 2015 Available online 7 February 2015 Keywords: Insertion Sulfenamide Isocyanide Isothiourea Lewis acid #### ABSTRACT Lewis acid-catalyzed insertion of isocyanides **2** into nitrogen–sulfur bonds of sulfenamides **1** was developed. This method provided a convenient method for the synthesis of isothioureas **3**. Among Lewis acids examined, AlCl₃ brought about the best result. Acetic acid assisted one-pot preparation of unsymmetrical ureas was also described. © 2015 Published by Elsevier Ltd. #### Introduction Sulfenamides, R₂NSR', are synthetically interesting and important compounds due to their wide availability^{1,2} and the unique reactivity of the N–S bond.¹ Sulfenamides have been utilized as aminating reagents³ and sulfenyating reagents⁴ in addition to as aminyl radical precursors⁵ and catalysts for the oxidation of alcohols.⁶ Furthermore, unsaturated molecules such as carbon monoxide and alkynes can be inserted into the N–S bond of sulfenamides. For example, Kurosawa and co-workers revealed for the first time in 1999 that the reaction of sulfenamides with carbon monoxide was catalyzed by Pd(PPh₃)₄ in pyridine to provide thiocarbamates in high yields (Scheme 1, Eq. 1).^{7,8} Mitsudo and co-workers disclosed that the reaction of sulfenamides with alkynes was catalyzed by [RuCl₂(CO)₂]₂ in DMF to provide the corresponding adducts with high regio- and stereoselectivity (Scheme 1, Eq. 2).^{9–13} Here we wish to report that AlCl₃ catalyzes insertion of isocyanides **2** into N–S bonds of sulfenamides **1** giving rise to the formation of isothioureas **3** (Scheme 2). $$R_2 NSAr + R^1 = R^2 \xrightarrow{\begin{array}{c} [RuCl_2(CO)_2]_2 \\ (5 \text{ mol}\%) \end{array}} ArS NR_2$$ $$2 \text{ equiv} \qquad \begin{array}{c} DMF \\ 40 \text{ °C, 6 h} \end{array}$$ Scheme 1. Insertion of CO and alkynes into sulfenamides. $$R_2NSAr + R'NC$$ $$\frac{AICl_3 (30 \text{ mol}\%)}{\text{toluene}} Et_2N SAr$$ $$80 °C, 2 \text{ h}$$ **Scheme 2.** AlCl₃-catalyzed syntheses of isothioureas from isocyanides and sulfenamides. #### Results and discussions It was reported that thiophthalimides reacted with isocyanides without a catalyst in refluxing acetonitrile to give insertion products. ¹⁴ However, when we heated a mixture of *S*-phenyl-*N*,*N*-diethylsulfenamide **1a** and 2,6-xylyl isocyanide **2a** in acetonitrile ^a Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan ^b Department of Chemistry, Osaka Dental University, Hirakata, Osaka 573-1121, Japan ^{*} Corresponding authors. Tel.:+81 72 8643022; fax: +81 72 8643122 (S.F.); tel.: +81 6 68797388; fax: +81 6 68797391 (N.K.). E-mail addresses: fujiwara@cc.osaka-dent.ac.jp (S.-i. Fujiwara), kambe@chem. eng.osaka-u.ac.jp (N. Kambe). R₀N—SAr + R'NC $$Et_2NSPh + XyNC \xrightarrow{\begin{array}{c} Pd(PPh_3)_4 \\ (5 \text{ mol}\%) \\ \hline pyridine \\ 80 \ ^{\circ}C, \ 14 \ h \end{array}} \xrightarrow{\begin{array}{c} NXy \\ Et_2N \ ^{\circ}SPh \end{array}} + \xrightarrow{\begin{array}{c} O \\ Et_2N \ ^{\circ}NHXy \\ \hline NHXy \\ SPh \end{array}$$ **Scheme 3.** Reaction of a sulfenamide with an isocyanide in the presence of $Pd(PPh_3)_4$. SEt R SEt + ArNC $$\frac{GaCl_3 \text{ or}}{toluene}$$ $$Ar = 2.6-dichlorophenyl$$ $$\frac{GaCl_3 \text{ or}}{toluene}$$ $$30 ^{\circ}C, 2 \text{ h}$$ $$R R$$ **Scheme 4.** Lewis acid-catalyzed insertion of isocyanides to a C-S bond of dithioacetals **Table 1**Screening of Lewis acids | | or Ecwis delas | Lewis acid
(10 mol%) | | NXy | Q. | | |--------------------|--|-------------------------|---------------------|--------------------------------------|--------------------------------|--| | 1a , 2 equi | + XyNC - | solvent
80 °C, time | Et ₂ N (| SPh + E | Et ₂ N NHXy | | | run | Lewis acid | solvent | time | yiel
3a , % ^{a,b} | d 4a , % ^{a,b} | | | 1 | GaCl ₃ | DMF | 24 h | 72 | 8 | | | 2 | TiCl ₄ | DMF | 24 h | 32 | 50 | | | 3 | InCl ₄ | DMF | 24 h | 72 | 9 | | | 4 | AICI ₃ | DMF | 24 h | 72 | 2 | | | 5 | ZrCl ₄ | DMF | 24 h | 70 | 14 | | | 6 | BBu ₃ | DMF | 24 h | 58 | 9 | | | 7 | BPh ₃ | DMF | 24 h | 72 | 4 | | | 8 | B(C ₆ F ₅) ₃ | DMF | 24 h | 66 | 14 | | | 9 | BF ₃ •OEt ₂ | DMF | 24 h | 72 | 10 | | | 10 ^c | CH ₃ COOH | DMF | 30 h | 6 | 79 (78) | | | 11 ^d | AICI ₃ | DMF | 24 h | 75 | 3 | | | 12 ^d | AICI ₃ | toluene | 24 h | 81 | n.d. | | | 13 ^{d, e} | AICI ₃ | toluene | 2 h | 80 (77) | n.d. | | Conditions: **2a** (0.4 mmol), **1a** (2 equiv), Lewis acid (1 equiv), solvent (0.4 mL). ^a NMR yields. ^b Isolated yield in parentheses. ^cCH₃COOH (1 equiv). ^d AICl₃ (30 mol%). ^e **1a** (1 equiv). under similar conditions, insertion reaction did not proceed at all. Then we examined the palladium catalyzed system developed for azathiolation of carbon monoxide shown in Scheme 1. When a pyridine (0.4 mL) solution of sulfenamide $\bf 1a$ (0.4 mmol), isocyanide $\bf 2a$ (0.4 mmol), and Pd(PPh₃)₄ (5 mol %) was heated at 80 °C for **Table 2** AlCl₃-catalyzed reaction of isocyanides with sulfenamides leading to isothioureas AICI₃ (30 mol%) | | 2 | toluer | R ₂ N´`SAr | | | |----------------|----------------------------------|--|---------------------------------------|--------------------|--| | | 1 | 2 80°C, 2 | 2 h 3 | | | | run | sulfenamide | isocyanide | isothiourea | yield ^a | | | | | | | | | | 1 | NSPh | XyNC | NXy
N SPh | 79% | | | | 1b | 2a | 3b | | | | 2 | NSPh | 2a | NXy
N SPh | 69% | | | | 1c | | 3с | | | | 3 | Et ₂ NS <i>p</i> -tol | 2a | NXy
Et ₂ N Sp-tol | 70% | | | | 1d | | 3d | | | | 4 ^b | Et₂NSPh | DippNC | NDipp
Et₂N | 78% | | | | 1a | 2b | 3e | | | | 5 ^c | 1a | p-MeOC ₆ H ₄ NC
2c | NC_6H_4 - p -OMe Et_2N SPh $3f$ | 47% | | | 6 | 1a | BnNC
2d | NBn
Et₂N SPh
3g | 93% | | | 7 | 1a | CyNC | NCy
Et ₂ N SPh | 35% | | Conditions: sulfenamide 1 (0.4 mmol), isocyanide 2 (0.4 mmol), AlCl₃ (30 mol%), toluene (0.4 mL), 80°C, 2 h. a Isolated yield. b DippNC = 2,6-diisopropylphenylisocyanide. c *p*-MeOC $_6$ H₄NC (2 equiv), 5 h. 14 h, desired isothiourea **3a** was not formed and the corresponding urea **4a**, a hydrolyzed product of **3a**, was obtained in 3% yield (Scheme 3). Even after several trials by the use of other metal catalysts such as Rh(PPh₃)₃Cl the yields of **3a** and **4a** were not improved so much. Recently, Chatani and co-workers disclosed that isocyanides reacted with dithioacetals to give insertion products in the presence of Lewis acids such as GaCl₃ and TiCl₄ (Scheme 4).¹⁵ Then we conducted the reaction of sulfenamide **1a** with isocyanide **2a** in the presence of Lewis acids and the results are given in **Table 1**. When 2,6-xylyl isocyanide **2a** (0.4 mmol) was allowed to react with sulfenamide **1a** (2 equiv) in the presence of GaCl₃ (10 mol %) in DMF at 80 °C for 24 h, isothiourea **3a** was formed in 72% yield (run 1). In this reaction, 8% of urea **4a** was also obtained; however, multiple insertion products incorporating more than one isocyanide molecules were not detected. In the case of TiCl₄, urea **4a** became the major product (run 2). InCl₃, ZrCl₄, and BPh₃ exhibited similar activities as GaCl₃, and the use of AlCl₃ gave the best selectivity (runs 3–9). Interestingly, when 1 equiv of acetic acid was employed as an additive, urea **4a** was formed in 79% yield (run 10). Since 13% of isocyanide **2a** remained unreacted in run 4, we used 30 mol % of AlCl₃ but the yield of **3a** was improved only ## Download English Version: # https://daneshyari.com/en/article/5262344 Download Persian Version: https://daneshyari.com/article/5262344 <u>Daneshyari.com</u>