Accepted Manuscript

Fullerene recognition by 5-nitro-11,17,23,29-tetramethylcalix[5]arene

Karolína Flídrová, Alan Liška, Jiř í Ludvík, Václav Eigner, Pavel Lhoták

PII: S0040-4039(15)00275-0

DOI: http://dx.doi.org/10.1016/j.tetlet.2015.02.016

Reference: TETL 45884

To appear in: Tetrahedron Letters

Received Date: 9 December 2014 Revised Date: 19 January 2015 Accepted Date: 4 February 2015

Please cite this article as: Flídrová, K., Liška, A., Ludvík, J., Eigner, V., Lhoták, P., Fullerene recognition by 5-nitro-11,17,23,29-tetramethylcalix[5]arene, *Tetrahedron Letters* (2015), doi: http://dx.doi.org/10.1016/j.tetlet. 2015.02.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters

journal homepage: www.elsevier.com

Fullerene recognition by 5-nitro-11,17,23,29-tetramethylcalix[5] arene

Karolína Flídrová ^a, Alan Liška ^b, Jiří Ludvík ^b, Václav Eigner ^c, Pavel Lhoták ^{a,*}

- ^a Department of Organic Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
- b J. Heyrovský Institute of Physical Chemistry, Academy of Sciences, Department of Molecular Electrochemistry, Dolejškova 3, 182 23 Prague 8, Czech Republic
- ^c Department of Solid State Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic

ARTICLE INFO

ABSTRACT

Article history: Received

Received in revised form

Accepted Available online

Keywords: Calixarene

Recognition

Fullerene Complexation X-ray structure

The condensation of different building blocks allows the synthesis of an electrochemically active 5-nitro-11,17,23,29-tetramethylcalix[5] arene that was designed to study fullerene complexation using cyclic voltammetry. Although this method was ultimately unsuccessful, the formation of complexes between the calix[5] arene derivative and C₆₀ or C₇₀ fullerenes in solution was proved by mass spectrometry. Moreover, the solid state structure of the complex with fullerene C₆₀ was confirmed by X-ray crystallography.

2009 Elsevier Ltd. All rights reserved.

Calix[n]arenes are cavity-shaped macrocycles¹ consisting of electron-rich aromatic (phenolic) subunits making them suitable hosts for electron-deficient guests such as various ammonium salts, soft metal cations or fullerenes that can be held by cation- π or π - π interactions.² Unfortunately, calix[4] arene in the *cone* conformation is too small to accommodate fullerenes inside its cavity. Furthermore, larger macrocycles such as calix[6]arene or calix[8]arene also suffer from several drawbacks, which include conformational mobility and the absence of selective derivatization techniques. Hence, calix[5]arene seems to be the best choice as the size of the cavity perfectly corresponds to the diameter of the most common fullerenes, C_{60} and C_{70} . Moreover, matching of the fullerene curvature with a bowl-shaped calixarene (concave-convex principle) leads to attractive interactions between both systems via additional van der Waals (dispersion) forces.² The perfect size and shape complementarity of both systems has also been confirmed from the crystal structures of fullerene-calix[5]arene complexes,³ leading to the development of several highly efficient hosts, which has enabled UV-Vis or fluorescence detection of the complexation phenomenon in solution.4 A recent electrochemical study of nitrocalixarenes⁵ led us to the idea of introducing this redox marker into the calix[5] arene host and to study the complexation of fullerene via electrochemical methods.

From a synthetic point of view, the introduction of only one nitro group to the upper rim was desirable to maintain the good solubility of the host and to preserve its complexation ability. Since selective mononitration of calix[5]arene requires alkylation of the lower rim, direct synthesis of the macrocycle from

suitable oligomers was chosen. As the corresponding building blocks are easily obtainable and known compounds, we studied

$$\begin{array}{c} \text{NO}_2 \\ \text{OH} \\ \text{I} \end{array} \begin{array}{c} \text{NO}_2 \\ \text{OH} \\ \text{O} \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \end{array} \begin{array}{c} \text{OH}$$

Scheme 1. Reagents and conditions: (i) CH₂=O, AcOH, H₂SO₄, 60 °C, 35 h; (ii) aq. HCl, reflux overnight; (iii) 4, HCl, 130 °C, 10 h; (iv) CH₂=O, KOH, 0 to 40 °C, 4 d; (v) 4, HCl, 130 °C, overnight; (vi) xylene, reflux, 3 d.

^{*} Corresponding author. Tel.: Pavel Lhotak. Tel.: +420-220-445-055; fax: +420-220-444-288; e-mail: lhotakp@vscht.cz

Download English Version:

https://daneshyari.com/en/article/5262345

Download Persian Version:

https://daneshyari.com/article/5262345

<u>Daneshyari.com</u>