FISEVIER

Contents lists available at ScienceDirect

### **Tetrahedron Letters**

journal homepage: www.elsevier.com/locate/tetlet



# Pd-catalyzed asymmetric $\alpha$ -allylic alkylation of thioamides



Bin Rong a,†, Qin Yang a,†, Yong Liu , Hong Xu , Yifan Hu , Xuejing Cheng , Baoguo Zhao A,b,\*

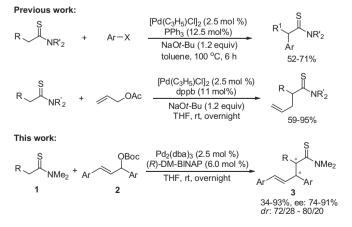
<sup>a</sup> The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China <sup>b</sup> CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China

#### ARTICLE INFO

Article history:
Received 9 September 2014
Revised 29 November 2014
Accepted 8 December 2014
Available online 13 December 2014

Keywords: Allylic alkylation Thioamide Asymmetric Palladium Catalysis

#### ABSTRACT

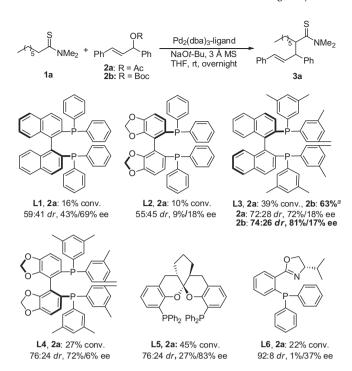

This Letter describes the first catalytic asymmetric  $\alpha$ -allylic alkylation of thioamides. By using 5 mol % Pd-(R)-DM-BINAP complex as the chiral catalyst, various thioamides were efficiently  $\alpha$ -allylic alkylated with 1,3-diarylallyl carbonates under mild conditions, affording a variety of  $\alpha$ -substituted thioamides in good yields with high enantioselectivity and moderate diastereoselectivity. This work represents a useful and direct route to prepare chiral functionalized thioamides.

© 2014 Elsevier Ltd. All rights reserved.

Thioamides<sup>1</sup> are important compounds with wide applications in organic synthesis,<sup>2</sup> catalysis,<sup>3</sup> material chemistry,<sup>4</sup> and medicinal chemistry.<sup>5</sup> Thioamides have more acidic  $\alpha$ -protons than the corresponding amides<sup>6</sup> and thus have been extensively employed as carbon nucleophiles in organic synthesis. 1,2 However, the application of thioamides as carbon nucleophiles in transition-metalcatalyzed C-C coupling with various electrophiles are rarely investigated.<sup>7,8</sup> Recently, we have shown that thioamides were reactive substrates for Pd-catalyzed  $\alpha$ -arylation<sup>8a</sup> and allylic alkylation<sup>8b</sup> (Scheme 1), providing two efficient methods for the synthesis of  $\alpha$ -functionalized thioamides. In the further studies, we have found that Pd-catalyzed asymmetric allylic alkylation of thioamides 1 can be realized by using tert-butyl 1,3-diarylallyl carbonates 2 as allylic electrophiles and (R)-(+)-2.2'-bis[di(3.5-xvlvl)phosphine]-1.1'binaphthyl [(R)-DM-BINAP] as chiral ligand, to give a variety of chiral  $\alpha$ -branched thioamides **3** in good yields with high enantioselectivity (Scheme 1).<sup>9-11</sup> Herein, we wish to report our studies on the catalytic asymmetric allylic alkylation of thioamides.

The studies commenced with the investigation of the impact of chiral ligands on Pd-catalyzed allylic alkylation of *N*,*N*-dimethyl octanethioamide (**1a**) with 1,3-diphenylallylic acetate (**2a**) (Scheme 2). Bidentate P-P (**L1-5**)<sup>12a-f</sup> and N-P (**L6**)<sup>12g,h</sup> ligands were both active for the reaction. The chiral ligands had a significant influence on the reaction in terms of diastereo- and enantioselectivities. Phosphine ligands **L1-5** exhibited low to moderate

diastereoselectivity in the reaction, nevertheless, up to 92:8 *dr* value was obtained with N–P ligand **L6**. The distinct difference in diastereoselectivity among the chiral ligands **L1–6** suggested that the catalyst has thrown a crucial impact on the diastereoselectivity and also implied that potential epimerization was likely not severe although strong base NaOt-Bu was employed. It was supposed that the thioamide **1a** had been converted into thio-enolate by the equivalent base NaOt-Bu to serve as the active nucleophile in the Pd(0)-catalyzed allylic alkylation. This would greatly lower the basicity of the reaction mixture, thus no obvious epimerization




**Scheme 1.** Pd-catalyzed  $\alpha$ -arylation and allylic alkylation of thioamides.

<sup>\*</sup> Corresponding author.

E-mail address: zhaobg2006@hotmail.com (B. Zhao).

<sup>†</sup> The authors contributed equally to this work and share first authorship.



Scheme 2. Screening ligands for the Pd catalyzed asymmetric  $\alpha$ -allylic alkylation of thioamides. All the reactions were carried out with thioamide 1a (0.10 mmol), 2 (0.15 mmol), NaOt-Bu (0.10 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (0.0025 mmol), ligand (0.0060 mmol), and 3 Å molecular sieves (0.020 g) in dry THF (0.60 mL) under N<sub>2</sub> atmosphere at room temperature overnight unless otherwise stated. For the reaction using 1a as the ligand, thioamide 1a (0.061 mmol), allylic ester 2a (0.079 mmol), NaOt-Bu (0.078 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (0.0018 mmol) and 1a (0.0078 mmol) were used. The conversions were based on 1a and determined by 1a H NMR analysis of the crude reaction mixtures, the 1a ralues were also determined by chiral HPLC analysis; 1a solated yield based on 1a.

was observed in the ligand-screening experiments. Biaryl phosphine ligands DM-BINAP (L3) and DM-SEGPHOS (L4) showed the highest enantioselectivity (72% ee) for the major diastereoisomer, however, spiroketal bisphosphine (SKP) (L5) was most enantioselective (83% ee) for the minor diastereoisomer in the reaction. The O-activating group of the allylic electrophiles 2 has also been explored for the Pd-catalyzed allylic alkylation of thioamide 1a using DM-BINAP (L3) as the chiral ligand. O-Boc-protected allylic carbonate 2b displayed higher reactivity (63% isolated yield vs 39% conversion) and better enantioselectivity (ee: 81% vs 72%) than the O-Ac-protected allylic ester 2a. Thus, we chose (R)-DM-BINAP (L3) as the chiral ligand and O-Boc-protected allylic carbonates as allylic electrophiles in the following studies.

Reaction parameters including base, palladium source, and solvent were then investigated in the Pd-catalyzed asymmetric allylic alkylation of thioamide 1a with carbonate 2b using (R)-DM-BINAP (L3) as the chiral ligand (Table 1). In order to remove the  $\alpha$ -H of thioamide 1a, strong base was necessary for the reaction. For example, NaOt-Bu promoted the allylic alkylation smoothly (Table 1, entry 1), while  $Cs_2CO_3$  was inactive for the reaction (Table 1, entry 2). All the strong bases examined displayed similar performance in terms of diastereo- and enantioselectivities (Table 2, entries 1 and 3–5). NaHMDS was chosen as the base for the reaction. Further studies revealed that  $Pd_2(dba)_3$  was the suitable palladium precursor (Table 1, entries 4 and 6–8) and THF was the solvent of choice for the asymmetry  $\alpha$ -allylic alkylation of thioamides (Table 1, entries 4 and 9–10).

Under the above established optimal conditions, substrate scope was then tested for the Pd-catalyzed asymmetric  $\alpha$ -allylic

**Table 1** Optimization of reaction conditions for the Pd-catalyzed asymmetric  $\alpha$ -allylic alkylation of thioamides<sup>a</sup>

S

| s<br>A         | + (R)-DM-E                                                                 | (5.0 mol %)<br>BINAP (6.0 mol % | 6)_ /           | NMe <sub>2</sub>    |  |
|----------------|----------------------------------------------------------------------------|---------------------------------|-----------------|---------------------|--|
| ∕ 5 <b>∨ ľ</b> | NMe <sub>2</sub> Ph Ph 3 Å M                                               | S, rt, overnight                | Ph              | $\bigwedge_{Ph}$    |  |
| 1a             | 2b                                                                         | 2b                              |                 | 3a                  |  |
| Entry          | Conditions                                                                 | Yield <sup>b</sup> (%)          | dr <sup>c</sup> | ee <sup>d</sup> (%) |  |
| 1              | NaOt-Bu, Pd <sub>2</sub> (dba) <sub>3</sub> , THF                          | 63                              | 74:26           | 81/17               |  |
| 2              | Cs <sub>2</sub> CO <sub>3</sub> , Pd <sub>2</sub> (dba) <sub>3</sub> , THF | e                               |                 |                     |  |
| 3              | LiHMDS, Pd <sub>2</sub> (dba) <sub>3</sub> , THF                           | 78                              | 73:27           | 87/12               |  |
| 4              | NaHMDS, Pd2(dba)3, THF                                                     | 77                              | 75:25           | 88/19               |  |
| 5              | KHMDS, Pd2(dba)3, THF                                                      | 77                              | 72:28           | 88/26               |  |
| 6              | NaHMDS, Pd(OAc)2, THF                                                      | 55                              | 77:23           | 84/17               |  |
| 7              | NaHMDS, PdCl <sub>2</sub> , THF                                            | 50                              | 76:24           | 87/18               |  |
| 8              | NaHMDS, $[Pd(C_3H_5)Cl]_2$ , THF                                           | 59                              | 76:24           | 82/17               |  |
| 9              | NaHMDS, Pd2(dba)3, DCM                                                     | e                               |                 |                     |  |
| 10             | NaHMDS, Pd <sub>2</sub> (dba) <sub>3</sub> , toluene                       | 55                              | 76:24           | 74/22               |  |

- <sup>a</sup> All the reactions were carried out with thioamide  $\bf 1a$  (0.10 mmol), allylic carbonate  $\bf 2b$  (0.15 mmol), base (0.10 mmol), [Pd] (0.0050 mmol), ( $\it R$ )-DM-BIN-AP(0.0060 mmol) and 3 Å molecular sieves (0.020 g) in the solvent (0.60 mL) under  $N_2$  atmosphere at room temperature overnight.
  - b Isolated yields based on 1a.
- $^{\rm c}$  The dr values were determined by  $^{\rm 1}{\rm H}$  NMR analysis of the crude reaction mixtures.
  - <sup>d</sup> The ee's were determined by chiral HPLC analysis.
- <sup>e</sup> No alkylation product **3a** was observed as judged by <sup>1</sup>H NMR analysis of the crude reaction mixture

**Table 2** Pd-catalyzed asymmetric  $\alpha$ -allylic alkylation of thioamides<sup>a</sup>

| •     | -                                                      |                        |                 | •                   |
|-------|--------------------------------------------------------|------------------------|-----------------|---------------------|
| Entry | Product                                                | Yield <sup>b</sup> (%) | dr <sup>c</sup> | ee <sup>d</sup> (%) |
| 1     | S<br>NMe <sub>2</sub><br>Ph Ph                         | 77                     | 75:25           | 88/19               |
| 2     | S<br>NMe <sub>2</sub><br>Ph Ph                         | 76                     | 74:26           | 90/19               |
| 3     | S<br>NMe <sub>2</sub><br>Ph Ph<br>3c                   | 69                     | 74:26           | 89/26               |
| 4     | Ph NMe <sub>2</sub> Ph Ph 3d                           | 93                     | 77:23           | 91/26               |
| 5     | Ph NMe <sub>2</sub> Ph Ph 3e                           | 90                     | 72:28           | 87/14               |
| 6     | p-MeOC <sub>6</sub> H <sub>4</sub> NMe <sub>2</sub> Ph | 84                     | 76:24           | 87/13 <sup>e</sup>  |

## Download English Version:

# https://daneshyari.com/en/article/5262459

Download Persian Version:

https://daneshyari.com/article/5262459

<u>Daneshyari.com</u>