Tetrahedron Letters 55 (2014) 6515-6519

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Ring opening of disubstituted epoxides linked to a secondary oxygen group with an organocopper reagent

Tetrahedro

Naoki Terayama, Shodai Ushijima, Eiko Yasui, Masaaki Miyashita, Shinji Nagumo*

Department of Applied Chemistry, Kogakuin University, Nakano 2665-1, Hachioji, Tokyo 192-0015, Japan

ARTICLE INFO

Article history: Received 27 October 2013 Revised 24 August 2014 Accepted 8 September 2014 Available online 21 September 2014

Keywords: Epoxy ring opening Epoxide linked to secondary alcohol Regioselectivity Trimethylsilyl Gilman reagent

ABSTRACT

Coupling reactions of epoxide linked to a secondary oxygen group with Gilman reagents were examined. The regiochemical direction depended on whether there is TMS or MOM as a protective group of the secondary alcohol. *anti*-Epoxy alcohol **6** tended to react with Me₂CuLi at the C4 position to generate 1,2-diol **22** as a major component. Epoxide **7** linked to a trimethylsilyloxy group displayed selective formation of 1,3-diol **18**. On the other hand, the reactions of *syn*-epoxy alcohol **12** and the corresponding TMS ether **13** resulted in the selective formation of 1,2-diol **25**.

© 2014 Elsevier Ltd. All rights reserved.

Reactions of organocopper reagents have been considered to be useful synthetic tools in modern organic chemistry.¹ Gilman reagent, which is the most popular organocopper reagent, is soluble in an ethereal solvent and more reactive than the corresponding RCu.^{2,3} It has been frequently used in various types of C-C bond formations such as substitution and conjugated addition.⁴ Epoxides are well known as good substrates that react with Gilman reagent.⁵ Occurring with complete inversion at the reacting center of the epoxide, the substitution has been applied to the syntheses of widespread natural products, particularly those containing a polypropionate part. However, since epoxides can react in either of two directions, their regioselectivity is an important issue. In the case of using epoxides linked to a primary alcohol, the selectivity has been investigated in detail. 2,3-Epoxy alcohols such as 1 having a substituent at the C-4 position react with Me₂CuLi regioselectively to afford 2-methylated 1,3-diol (Scheme 1, Eq. 1).⁶ The regioselectivity is attributed to hindrance from the C-4 methyl group, rather than a chelation effect by the adjacent hydroxyl group. This is because significant regioselectivity cannot be observed in the absence of the alkyl group at the C4 position (Scheme 1, Eq. 2).⁷ On the other hand, there has been very little research on epoxides linked to a secondary alcohol. We report herein critical factors affecting the regioselectivity in the ring opening of epoxides linked to secondary oxygen groups with Gilman reagents: relative configuration of the neighboring secondary alcohol and protection of the alcohol with a TMS or MOM group.

Ring opening of epoxy alcohols 6-17 with no appendage at the opposite site to a secondary alcohol was first investigated (Table 1). Treatment of anti-epoxy alcohol 6 with Me₂CuLi in Et₂O at 0 °C generated a mixture of 1,3-diol 18a and 1,2-diol 22a in 75% yield with a ratio of 1:3 (entry 1), which was in contrast to the regioselectivity in Eq. 2 (Scheme 1). Several kinds of additives are well known to accelerate the copper-mediated reaction and control its regio-, stereo-, and chemoselectivity. Interestingly, the coupling reaction of **6** with Me₂CuLi in the presence of TMSCl⁸ gave a mixture of several silylated compounds, which was further treated with TBAF leading to **18a** and **22a** in 88% yield as a mixture with a ratio of ca. 1.5:1 (entry 2). In the reaction mixture, a part of 6 was probably silvlated to form 7, which undergoes ring opening with a different regiochemical selectivity from that of 6. We thus performed ring opening of 7 prepared in advance (entry 6). After deprotection of a silyl group, the selectivity was found to increase to 2.5:1 as we expected.⁹ An effect of the TMS group on the regiochemical course was also found when butyl, hexyl, and allyl Gilman reagents were used (entries 3-5 and 7-9). Protection of the hydroxyl group by a bulkier silyl group resulted in a decrease or inversion of regiochemical selectivity (entries 10-13). Thus, small size of the silyl group seems to be essential for selective formation of 1,3-diol. Next, the effects of other types of protecting groups were investigated. Despite the very small size of the protecting group, ring opening of epoxide **10** with a methoxy group resulted in the formation of almost equal amounts of regiochemical isomers

^{*} Corresponding author. Tel.: +81 042 628 4864/4870; fax: +81 042 628 4864. *E-mail address*: bt13071@ns.kogakuin.ac.jp (S. Nagumo).

Scheme 1. Ring opening of epoxides linked to a primary alcohol with Me₂CuLi.

Table 1

Ring opening of epoxides 6-17 with R₂CuLi

Entry	Substrates	Configuration of OP	Reagents	Products	Yields (%)	Ratios (1,3-diol:1,2-diol)
1	6 (P = H)	α	Me ₂ CuLi	18a , 22a (P = H, R = Me)	75	1:3
2 ^{a,b}	6 (P = H)	α	Me ₂ CuLi	18a , 22a (P = H, R = Me)	88	1.5:1
3	6 (P = H)	α	n-Bu ₂ CuLi	18b , 22b (P = H, R = <i>n</i> -Bu)	90	1:4.4
4	6 (P = H)	α	(C ₆ H ₁₃) ₂ CuLi	18c , 22c ($P = H$, $R = C_6H_{13}$)	87	1:4.4
5	6 (P = H)	α	$(CH_2 = CHCH_2)_2CuLi$	18d, 22d (P = CH ₂ =CHCH ₂)	86	1:1.5
6 ^b	7 (P = TMS)	α	Me ₂ CuLi	18a , 22a (P = H, R = Me)	81	2.5:1
7 ^b	7 (P = TMS)	α	n-Bu ₂ CuLi	18b , 22b (P = H, R = <i>n</i> -Bu)	60	2.5:1
8 ^b	7 (P = TMS)	α	$(C_6H_{13})_2CuLi$	18c , 22c ($P = H$, $R = C_6H_{13}$)	57	2.2:1
9 ^b	7 (P = TMS)	α	$(CH_2 = CHCH_2)_2CuLi$	18d, 22d (P = H, CH ₂ =CHCH ₂)	74	2:1
10 ^b	8 (P = TES)	α	Me ₂ CuLi	18a , 22a (P = H, R = Me)	73	1.5:1
11 ^b	8 (P = TES)	α	n-Bu ₂ CuLi	18b , 22b (P = H, R = <i>n</i> -Bu)	66	1.5:1
12 ^b	9 (P = TBS)	α	Me ₂ CuLi	18a , 22a (P = H, R = Me)	66	1:1
13 ^b	9 (P = TBS)	α	n-Bu ₂ CuLi	18b , 22b (P = H, R = <i>n</i> -Bu)	78	1:1.5
14	10 (P = Me)	α	Me ₂ CuLi	19a , 23a (P = Me, R = Me)	86	1:1
15	11 (P = MOM)	α	Me ₂ CuLi	20a , 24a (P = MOM, R = Me)	92	3:1
16	11 (P = MOM)	α	n-Bu ₂ CuLi	20b , 24b (P = MOM, R = <i>n</i> -Bu)	70	3:1
17	12 (P = H)	β	Me ₂ CuLi	21a , 25a (P = H, R = Me)	43	1:14
18	12 (P = H)	β	n-Bu ₂ CuLi	21b , 25b (P = H, R = <i>n</i> -Bu)	92	1:20
19 ^b	13 (P = TMS)	β	Me ₂ CuLi	21a , 25a (P = H, R = Me)	88	1:28
20 ^b	13 (P = TMS)	β	n-Bu ₂ CuLi	21b , 25b (P = H, R = <i>n</i> -Bu)	85	1:20
21	14 (P = H)	α	Me ₂ CuLi	26, 27	94	1:1.5
22 ^b	15 (P = TMS)	α	Me ₂ CuLi	26, 27	95	1.5:1
23	16 (P = H)	α	Me ₂ CuLi	28, 29	97	1:2.5
24 ^b	17 (P = TMS)	α	Me ₂ CuLi	28, 29	96	2.5:1

^a Entry 2 was carried out in the presence of TMSCl.

^b These ring openings were followed by treatment with TBAF.

19a and **23a** (entry 14). On the other hand, epoxide **11** with a MOM group reacted with Me₂CuLi regioselectively to produce a mixture of **20a** and **24a** in 92% yield with a ratio of 3:1 (entry 15). In the case of using *n*-Bu₂CuLi, the ratio of **20b** and **24b** was also 3:1 (entry 16). Regiochemical inversion by installing a TMS group was also observed in cases of using other *anti*-epoxy alcohol derivatives **14–17** (entries 21–24). We next carried out the

reaction of epoxides **12** and **13** with *syn* configuration. In these cases, highly selective formation of 1,2-diols was observed regardless of whether substrates have a TMS group or not (entries 17–20). An effect of the TMS group on the direction of substitution was thus limited to the reaction of *anti*-epoxy alcohol derivatives.

Next, we carried out ring opening of epoxy alcohols **34–37** and epoxy TMS-ethers **38–41** possessing a methyl substituent at the

Download English Version:

https://daneshyari.com/en/article/5262785

Download Persian Version:

https://daneshyari.com/article/5262785

Daneshyari.com