Tetrahedron Letters 54 (2013) 5865-5868

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of benzannulated spiroacetals using chiral gold–phosphine complexes and chiral anions

Tetrahedror

Rachelle Quach, Daniel P. Furkert, Margaret A. Brimble*

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

ARTICLE INFO

ABSTRACT

Ag(S)-TRIP.

Article history: Received 16 June 2013 Revised 26 July 2013 Accepted 21 August 2013 Available online 31 August 2013

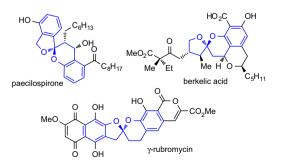
Keywords: Gold catalysis Spiroacetals Asymmetric synthesis Chiral catalysts

The 5,6-benzannulated spiroacetal moiety is a key pharmacophore found in a variety of natural products exhibiting interesting biological activity, such as paecilospirone,¹ berkelic acid² and the rubromycins³ (Fig. 1). In particular, paecilospirone, an antimitotic agent isolated from the marine fungus *Paecilomyces* sp.,¹ was recently synthesised by our group.⁴ To date, there has been limited work on the construction of the paecilospirone spiroacetal ring system⁵ and the development of methods for the reagentcontrolled asymmetric catalytic synthesis of spiroacetals has only recently emerged.

Gold catalysis has developed into a robust synthetic tool for the addition of heteroatoms to carbon-carbon multiple bonds under mild conditions.⁶ Whilst spiroacetals have been assembled using gold catalysis.⁷ extension of this valuable synthetic method to the enantioselective synthesis of spiroacetals has only recently been reported. Ding and coworkers developed an Ir(I)/SpinPHOXcatalysed asymmetric hydrogenation and spirocyclisation of α, α' -bis(2-hydroxyarylidene) ketones for the formation of enantioenriched spiroacetals.⁸ List and Nagorny have independently reported the chiral phosphoric acid catalysed enantioselective spiroacetalisation of enol ethers.^{9,10} In addition, Gong and coworkers reported a gold(I)/Bronsted acid relay catalytic three-component cascade reaction to generate highly enantioenriched spiroacetals.¹¹ During the preparation of this manuscript, Hashmi et al. also reported highly active NAC-gold catalysts for the synthesis of phenols and spiroacetals.¹² Our ongoing interest in the synthesis of benzannulated spiroacetals^{4,5,13} prompted us to investigate the use of chiral gold-ligand complexes to catalyse the enantioselective

spirocyclisation of dihydroxyalkyne **2** to construct the spiroacetal ring system **1** of paecilospirone. Herein we report an asymmetric gold-catalysed dihydroalkoxylation strategy for the synthesis of the 3'*H*-spiro[chroman-2,1'-isobenzofuran] ring system **5**.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

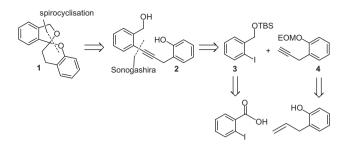

The development of an asymmetric gold-catalysed dihydroalkoxylation strategy for the synthesis of the

3'H-spiro[chroman-2,1'-isobenzofuran] spiroacetal ring system 5 is described. Spiroacetal was generated

in up to 87:13 enantiomeric ratio using chiral gold-phosphine complexes and chiral silver phosphate

We envisaged that the spiroacetal would be generated via metal-catalysed spirocyclisation of dihydroxyalkyne **2**, accessible from Sonogashira coupling of **3** and **4**. Iodide **3** and alkyne **4** in turn would be prepared easily from commercially available reagents (Scheme 1). The cyclisation precursor, dihydroxyalkyne **2** was prepared by Sonogashira coupling of iodide **3**¹⁴ with alkyne **4**¹⁴ using Pd(OAc)₂ and 1,1'-bis(di-*tert*-butylphosphino)ferrocene (dtbpf) followed by cleavage of both protecting groups with 20 mol % *p*-toluenesulfonic acid (Scheme 2).

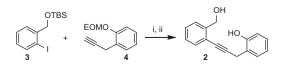
With dihydroxyalkyne **2** in hand, we focused our attention on the gold-catalysed enantioselective spirocyclisation to form spiroacetal **1** (Table 1). Initially, various metal catalysts (Pd, Cu and Au) were screened for their ability to effect the dihydroalkoxylation of **2**.



* Corresponding author. E-mail address: m.brimble@auckland.ac.nz (M.A. Brimble).

0040-4039/\$ - see front matter Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.08.077

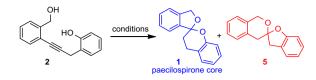
Figure 1. Structures of 5,6-benzannulated spiroacetal natural products: paecilo-spirone, berkelic acid and γ -rubromycin.



Scheme 1. Retrosynthetic strategy.

A regioisomeric mixture of spiroacetals **1** and **5** resulted with all the catalytic systems.¹⁵ Products **1** and **5** were separable by chromatography, however, the composition of mixtures could be determined by ¹H NMR. The catalyst screen revealed that AuPPh₃Cl in the presence of AgSbF₆ in dichloromethane was initially the most effective for the spirocyclisation of **2** (entry 7). Good selectivity for **1** was obtained with the inclusion of the racemic biaryl phosphine ligand, BINAP (**6**) (entry 8). Surprisingly, a change in selectivity in favour of **5** was observed following a change in solvent from dichloromethane to 1,4-dioxane (entry 9) that was even more pronounced upon changing from AuPPh₃Cl to AuCl₃ (entry 10) indicating that both the nature of the gold catalyst and the solvent influenced the regioselectivity of the spirocyclisation. AuCl·SMe₂ gave similar selectivity and yields to AuPPh₃Cl and was therefore used in subsequent experiments (entries 15 and 16).

With the optimised conditions in hand (entry 8), a range of chiral ligands were next investigated for their ability to influence the chirality established in the spirocyclisation reaction (Fig. 2). The use of chiral phosphine ligands (S)-BINAP ($\mathbf{6}$) and (R)-MeO-BIPHEP (7) resulted in a complete lack of asymmetric induction with only racemic material obtained (entries 11 and 12). Disappointingly, lowering the reaction temperature to -40 °C resulted in no reaction (entry 13), but at this temperature the (R)-MeO-BIPHEP (7) ligand showed good reactivity and an increase in selectivity for spiroacetal **1** (entry 14). This result suggests that the formation of spiroacetal 1 may be kinetically favoured. Alternative chiral ligands such as (R,S)-Josiphos (8), IndaBOX (9) and Ph-pyBOX (10) also resulted in a lack of chiral induction.¹⁶ Based on the chiral counterion approach reported by Toste and coworkers ¹⁷ we next investigated the use of the chiral silver phosphate, Ag(S)-TRIP (13), in the gold-catalysed spirocyclisation of 2. Surprisingly, spiroacetal 5 was obtained in 82:18 er while only 54:46 er was obtained for spiroacetal 1 (entry 15). A range of chiral phosphine-gold complexes were then used in combination with the chiral silver phosphate counterion. A slight improvement in enantioselectivity for 5 was observed using chiral ligands 6, 7, 11 and 12 (entries 16–19), however, no significant enantioselectivity for spiroacetal 1 was observed.


Our focus next turned to optimising the enantioselectivity for spiroacetal **5**. The chiral silver phosphate alone was found to also facilitate the reaction with good enantioselectivity (84:16 er for spiroacetal **5**), but gave spiroacetals **1** and **5** in poor yield (29%) even after extended reaction times (50 h, entry 20). The catalyst loading could be reduced to 2 mol % without significant change

Scheme 2. Synthesis of dihydroxyalkyne 2. Reaction conditions: (i) Pd(OAc)₂, dtbpf, K₂CO₃, NMP, 50 °C, 2 h, 66%; (ii) *p*-TSA (20 mol%), EtOH, 55 °C, 48 h, 77%.

Table 1

Asymmetric gold-catalysed spirocyclisation

Entry	Catalyst ^a	L ^b	AgX ^c	Yield ^d	1:5 ^e	er(1) ^f	$er(5)^{f}$
1	PdCl ₂	_	-	97	63:37	_	_
2	CuBr·SMe ₂	_	AgSbF ₆	25	57:43	_	_
3	AuCl	_	AgSbF ₆	53	53:47	_	_
4	AuCl ₃	_	_	92	74:26	_	_
5	AuPPh ₃ Cl	_	_	-	-	-	-
6	AuPPh ₃ Cl	_	AgOTf	75	82:18	-	-
7	AuPPh ₃ Cl	_	AgSbF ₆	99	77:23	-	-
8	AuPPh ₃ Cl	rac- 6	AgSbF ₆	83	85:15	-	-
9 ^g	AuPPh ₃ Cl	rac- 6	AgSbF ₆	72	48:52	-	-
10 ^g	AuCl ₃	rac- 6	AgSbF ₆	81	10:90	-	-
11	AuPPh ₃ Cl	(S)- 6	AgSbF ₆	98	87:13	0	0
12	AuPPh ₃ Cl	(R)- 7	AgSbF ₆	76	83:17	0	0
13 ^h	AuPPh ₃ Cl	(S)- 6	AgSbF ₆	-	-	-	-
14 ^h	AuPPh ₃ Cl	(R)- 7	AgSbF ₆	96	94:6	0	0
15	AuPPh ₃ Cl	-	Ag(S)- 13	81	88:12	54:46	82:18
16	AuCl-SMe ₂	(S)- 6	Ag(S)-13	83	75:25	54:46	86:14
17	AuCl-SMe ₂	(R)- 7	Ag(S)-13	72	84:16	51:49	87:13
18	AuCl-SMe ₂	(S)- 11	Ag(S)- 13	99	93:7	53:47	87:13 ⁱ
19	AuCl-SMe2	(R)- 12	Ag(S)- 13	99	68:32	53:47	86:14
20	_	-	Ag(S)- 13	29	68:32	53:47	84:16
21	AuCl-SMe2	(S)- 6	Ag(S)- 13	83	96:4	55:45	86:14
22	$AuCl \cdot SMe_2$	(R)- 6	Ag(S)- 13	27	100:0	50:50	-

All reactions carried out in CH₂Cl₂ at rt (unless otherwise noted).

^a 10 mol % catalyst except 2 mol % for entry 21.

^b Catalyst:L (2:1).

^c [M]:AgX (1:1) except entry 10 (1:3).

¹ Isolated yield (%) of regioisomeric mixture.

^e Determined by ¹H NMR.

^f er determined by chiral HPLC.

^g 1,4-Dioxane as solvent.

^h Reaction at $-40 \degree C$.

⁴ Mixture gave $[\alpha]_{D}^{25}$ –13 (*c* 1.0, CH₃Cl).

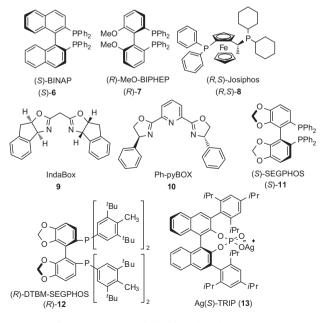


Figure 2. Structures of chiral ligands and counterions.

in enantioselectivity or yield (entry 21). Matched and mismatched pairing was not apparent in our studies with only a 7% difference in er obtained for spiroacetal **1** when pairing Ag(*S*)-TRIP (**13**) with

Download English Version:

https://daneshyari.com/en/article/5263116

Download Persian Version:

https://daneshyari.com/article/5263116

Daneshyari.com