Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Tetrabutylammonium-assisted diastereoselective [6π]-photocyclization of acrylanilides

Shinji Yamada*, Mai Okuda, Natsuo Yamamoto

Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

ARTICLE INFO

Article history: Received 19 January 2015 Revised 3 March 2015 Accepted 6 March 2015 Available online 12 March 2015

Keywords: Tetrabutylammonium [6π]-Photocyclization H-transfer Acrylanilide Dihydroquinolone

ABSTRACT

Tetrabutylammonium salts are remarkably effective for increasing diastereoselectivities in $[6\pi]$ -photocyclization reactions of acrylanilides. This TBA*-assisted photocyclization is applicable to a variety of acrylanilides to afford trans-dihydroquinolones. Using a d_5 -labeled substrate, it was elucidated that a tetrabutylammonium ion shields a zwitterionic intermediate from an intermolecular H-transfer, which enables preferential occurrence of the [1,5] H-shift to give trans products stereoselectively.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

 $[6\pi]$ -Photocyclization reactions of acrylanilides are an attractive method for the construction of the dihydroquinolone framework through a C–C bond formation between sp² carbons without using any reagents. 1-7 This reaction consists of two successive processes, the first of which is a 6π -electrocyclic ring closure that occurs in a conrotatory manner, and the second step is an intra- or intermolecular H-transfer, which has been established by a number of publications.²⁻⁷ In view of the stereochemical outcome, the ring closure and the H-transfer processes determine enantio- and diastereoselectivity, respectively (Scheme 1). Control of the enantioselectivity has been performed using chiral hosts,^{3,4} templates^{3,5} and auxiliaries,⁶ and axially chiral substrates.7 In contrast, diastereoselective approaches remain unexplored except in solid-state reactions.⁴ This is due to the difficulty of controlling a reaction with three possible H-transfer pathways (a)–(c), which are keys to the diastereo-determining process. In a zwitterionic intermediate, A, illustrated in Scheme 1, the pathway (a) is an intramolecular [1,5] H-shift leading to trans products, and the pathways (b) and (c) are intermolecular H-transfer processes leading to *trans* and *cis* products, respectively. As dihydroquinolones are key intermediates for the synthesis of n-NOS inhibitors⁸ and the framework structures of several natural products,9 the development of a general method for the diastereoselective synthesis of dihydroquinolinones is of importance.

In our previous report, tetraalkylammonium salts were effective for controlling the conformation of substrates in Norrish-Yang reactions through an ammonium- π interaction.¹⁰ We presumed that the addition of an ammonium would affect the diastereoselectivity of the $[6\pi]$ -electrocyclic reaction by inhibiting the H-transfer pathway (c). The concept underlying our strategy is outlined in Scheme 2. If the tetrabutylammonium ion (TBA⁺) forms a complex with the zwitterionic intermediate A and shields it from an intermolecular H-transfer, an intramolecular suprafacial [1,5] H-shift predominantly proceeds to give a trans compound diastereoselectively. In this communication, we report that tetrabutylammonium salts effectively assist the formation of trans-dihydroquinolones in the $[6\pi]$ -photocyclization of acrylanilides.

Results and discussion

In an initial investigation, photocyclization reactions of 1cyclopentene-1-carboxyanilide (**1a**)¹¹ were carried out by irradiation with a 450 W high-pressure mercury lamp in various reaction conditions (Table 1). Irradiation of 1a in CH₂Cl₂ gave cis-12 and trans-dihydroquinolones (2a) with no selectivity (entry 1). In contrast, irradiation in the presence of tetrabutylammonium salts gave trans-2a predominantly (entries 2-7); the stereochemistry of the compounds was confirmed by the X-ray structural analysis¹³

^{*} Corresponding author. Tel./fax: +81 3 5978 5349. E-mail address: yamada.shinji@ocha.ac.jp (S. Yamada).

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$

Scheme 1. A mechanism for the $[6\pi]$ -photocyclization of acrylanilide to *cis*- and *trans*-dihydroquinolones through intra- and intermolecular H-transfer reactions.

(Fig. S1). Among various counter anions, chloride and bromide anions are effective for the stereoselectivity and the yield, respectively. The lower conversion seen when using Bu₄NF is due to the formation of an unfavorable conformation for cyclization due to a H-bond between the fluoride ion and the NH moiety. 14 When the reaction was conducted at -40 °C, the selectivity was improved (entry 5). The chain length of the ammonium salts had little effect on the selectivity (entries 4, 8 and 9). Tetrabutylphosphonium bromide also effectively gives a similar result, whereas, CsF had little influence on the diastereomer ratio (entries 10 and 11); this suggests that oniumions are required for the selective formation of the trans isomer. THF and CF₃Ph were more effective solvents than CH₂Cl₂ in giving trans-2a (entries 12–15). Lowering the temperature gave a higher selectivity (entry 16). Decreasing the amount of tetrabutylammonium bromide (TBAB) from 5.0 to 3.0 equiv had little effect on the diastereomer ratio (entry 17). Further decreasing the amount from 3.0 to 1.0 equiv resulted in a small reduction of the trans isomer (entry 18). The fact that 0.5 equiv of TBAB is still effective for the trans-selectivity suggests a catalytic behavior of TBAB (entry 19).

The scope of this method was studied using a variety of compounds, **1b–1h**. Table 2 shows the results for the photocyclization of these substrates in both the presence and absence of TBAB. In all cases, the trans-selectivities in the presence of TBAB are much higher than those in the absence of TBAB. The trans and cis stereochemistry of the products was assigned by comparing the ¹H NMR chemical shifts of the methine protons with those of cis- and trans-2a (Table S4). Irradiation of 1b and 1c, having an electron-withdrawing and a donating group, produced trans-2b and 2c as major products, respectively (entries 1-4). The trans selectivity in the case of 1c improved when the reaction was conducted at -20 °C (entry 5). In the case of N-methyl substrate 1d, the selectivity was similar to that of unsubstituted 1a (entry 6). This is in contrast to the reported supramolecular photochemistry, in which the NH moiety is important in the formation of host-guest complexes.³ In the case of 1e, which has an indene moiety, TBAB is effective at improving the trans selectivity (entries 8 and 9). X-ray structural analyses of both the trans and cis diastereomers of 2e confirmed their stereochemistry¹³ (Figs. S2 and S3). It is interesting that while irradiation of 1f produced cis-2f as a major product, the addition of TBAB changed the selectivity to afford trans-2f in high yields (entries 10 and 11).

Scheme 2. A Strategy for the preferential occurrence of the [1,5] H-shift by blocking the intermolecular H-transfer using a TBA*.

The present method can be applied to heterocyclic compounds, such as furan¹⁵ and thiophen¹⁶ derivatives. It has been reported that the photocyclization of these compounds is accompanied by dehydrogenated and rearranged products via secondary reactions.^{15,16} Irradiation of **1g**^{4b} for 24 h produced **2g** in a very low yield (entry 13), whereas the TBAB was highly effective at increasing the yield of *trans-*2**g**^{4b} (entry 12). In the case of the thiophene derivative **1h**, the lower yield and selectivity were much improved by the addition of TBAB to give *trans-*2**h** in a good yield (entries 14 and 15). These results suggest that TBA* seems to prevent the usual secondary reactions.

All these results clearly show that TBAB enhances the diastereoselectivity to yield *trans*-isomers throughout the $[6\pi]$ photocyclization reactions of various substrates. It should be noted that no isomerization from cis-2a to trans-2a was detected: stirring cis-2a in the presence of TBAB for 5 h did not produce trans-2a. In addition, the structure optimization of cis- and trans-2a and 2e by DFT calculations at the B3LYP/6-31G* level shows that the cis isomers are much more stable than the trans isomers. The energies of trans-2a and 2e are 2.45 and 1.93 kcal/mol higher than those of cis-2a and 2e, respectively (Figs. S8 and S9). These are consistent with the results of the isomerization experiment described above. Although several methods have been reported for the synthesis of cis-dihydroquinolones, 8,9 no general methods for the synthesis of the trans isomers have been reported. Therefore, the present results would provide the first general route for the synthesis of trans-dihydroquinolones.

To elucidate the effect of the ammonium ion on the H-transfer processes, we employed d_5 -labeled^{3,17} **1e**- d_5 as a substrate. The results are shown in Scheme 3. The D/H ratios of the *trans* **2e**- d_5 / d_4 in the absence and presence of TBAB are 95/5 and 98/2, respectively (Fig. S4). This shows that the intramolecular [1,5] D-shift, pathway (a) in Scheme 1, is a major process, and the intermolecular H-transfer of pathway (b) is a minor process for the formation of the *trans* isomer. In contrast, the D/H ratio of the *cis* **2e**- d_5 / d_4

Table 1 $[6\pi]$ -Photocyclization of acrylanilide 1a

_								
	Entry ^a	Additive	Equiv	Solv	Temp (°C)	Time (h)	Conv (%) ^b	trans/ cis ^b
	1	_	0	CH_2Cl_2	rt	6	93	53:47
	2	Bu ₄ NF	5	CH_2Cl_2	rt	6	33	69:31
	3	Bu ₄ NCl	5	CH_2Cl_2	rt	6	91	79:21
	4	Bu ₄ NBr	5	CH_2Cl_2	rt	6	>99	76:24
	5	Bu ₄ NBr	5	CH_2Cl_2	-40	16	95	89:11
	6	Bu ₄ NI	5	CH_2Cl_2	rt	6	81	75:25
	7	Bu ₄ NPF ₆	5	CH_2Cl_2	rt	6	52	70:30
	8	Et ₄ NBr	5	CH_2Cl_2	rt	6	45	70:30
	9	$(C_8H_{17})_4NBr$	5	CH_2Cl_2	rt	6	>99	73:27
	10	Bu₄PBr	5	CH_2Cl_2	rt	6	>99	68:32
	11	CsF	5	CH_2Cl_2	rt	6	>99	41:59
	12	_	0	THF	rt	6	94	56:44
	13	Bu ₄ NBr	5	THF	rt	6	>99	84:16
	14	_	0	CF₃Ph	rt	16	>99	30:70
	15	Bu ₄ NBr	5	CF₃Ph	rt	16	>99	85:15
	16	Bu ₄ NBr	5	CF ₃ Ph	-20	16	98	91:09
	17	Bu ₄ NBr	3	CF ₃ Ph	rt	16	>99	85:15
	18	Bu ₄ NBr	1	CF ₃ Ph	rt	16	>99	84:16
	19	Bu ₄ NBr	0.5	CF ₃ Ph	rt	16	>99	81:19

^a The reactions were conducted in 0.1 M solution.

b Determined by ¹H NMR.

Download English Version:

https://daneshyari.com/en/article/5263197

Download Persian Version:

https://daneshyari.com/article/5263197

<u>Daneshyari.com</u>