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a b s t r a c t

This article presents a computationally efficient approach to the triangulation of 3D points from their
projections in two views. The homogenous coordinates of a 3D point is given as a multi-linear mapping
on its homogeneous image coordinates, a computation of low computational complexity. The multi-lin-
ear mapping is a tensor, and an element of a projective space, that can be computed directly from the
camera matrices and some parameters. These parameters imply that the tensor is not unique: for a given
camera pair the subspace K of triangulation tensors is six-dimensional. The triangulation tensor is 3D pro-
jective covariant and satisfies a set of internal constraints. Reconstruction of 3D points using the proposed
tensor is studied for the non-ideal case, when the image coordinates are perturbed by noise and the epi-
polar constraint exactly is not satisfied exactly. A particular tensor of K is then the optimal choice for a
simple reduction of 3D errors, and we present a computationally efficient approach for determining this
tensor. This approach implies that normalizing image coordinate transformations are important for
obtaining small 3D errors.

In addition to computing the tensor from the cameras, we also investigate how it can be further opti-
mized relative to error measures in the 3D and 2D spaces. This optimization is evaluated for sets of real
3D + 2D + 2D data by comparing the reconstruction to some of the triangulation methods found in the
literature, in particular the so-called optimal method that minimizes 2D L2 errors. The general conclusion
is that, depending on the choice of error measure and the optimization implementation, it is possible to
find a tensor that produces smaller 3D errors (both L1 and L2) but slightly larger 2D errors than the opti-
mal method does. Alternatively, we may find a tensor that gives approximately comparable results to the
optimal method in terms of both 3D and 2D errors. This means that the proposed tensor based method of
triangulation is both computationally efficient and can be calibrated to produce small reconstruction or
reprojection errors for a given data set.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Triangulation or reconstruction of a 3D point from its projection
y1; y2 in two images is a well-explored area in computer vision
[4,6,2,7,9]. A common method is optimal triangulation that mini-
mizes the total L2 reprojection error in the image domains. This
is done by determining two image points ~y1; ~y2 that minimize
the total L2 reprojection error dð~y1; y1Þ

2 þ dð~y2; y2Þ
2, where d is

the 2D Euclidean distance measured in the image space, and where
~y1; ~y2 satisfy the epipolar constraint defined by the fundamental
matrix. A non-iterative computational method for determining
~y1; ~y2 has been presented by Hartley and Sturm [3,6], and any stan-
dard technique can then be used to compute the 3D point from
~y1; ~y2. The statistical properties of this problem have been treated
also by Kanatani [8]. Other standard methods found in the litera-
ture are the mid-point method, and the homogeneous and the inho-
mogeneous methods [4].

The optimal method is often described as the preferred ap-
proach to triangulation. It gives a maximum likelihood estimate
of the 3D point, it is covariant to 3D projective transformations1,
and in general produces reconstructed 3D points of high accuracy
although its optimality is defined in the image domains. The down-
side of the optimal method is the complexity of its computations,
which include finding and comparing the roots of a sixth order poly-
nomial. This makes the method less attractive for real-time applica-
tions where large sets of points are reconstructed, for example
implemented in GPU hardware. A computationally less expensive
approach is described by Kanatani et al. [9] where close approxima-
tions of ~y1; ~y2 are computed in few iterations and with relatively
simple computations.

Optimal triangulation solves one optimization problem for every
new pair of image points. Here, we explore the possibility of describ-
ing a parameterized reconstruction process that can be optimized
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1 This means that if the 3D coordinate system is transformed by a homography, the
coordinates of the reconstructed 3D point always transform in the same way. This is
sometimes also referred to as projective invariance.
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for some calibration set of 3D and 2D data, and that can be applied to
a large range of error measures. Once determined, we can use this
process to reconstruct arbitrary points and produce small errors pro-
vided that the new points are sufficiently close to the calibration set.
This article shows that such a reconstruction process indeed exists: it
is a multi-linear mapping on the homogeneous image coordinates
and, as such, it has a low computational cost.

1.1. Mathematical preliminaries

This work is based on the multi-view pin-hole camera model
where the relation between 2D image and 3D world coordinates
is described as:

yi � Cix ½yi;a � Ci;abxb�; ð1Þ

where x and yi are the homogeneous representation of correspond-
ing 3D and 2D points, Ci is the camera matrix of view i, and � de-
notes vector equality up to a scalar multiplication. We will
sometime use the type of vector/matrix based notation shown to
the left, sometimes the coordinate based notation shown to the
right, and sometimes both. In the case of coordinate based notation,
lower case Latin indices are used for enumeration of views, Greek
indices enumerate elements of tensors, and an upper case Latin in-
dex represents a group of two Greek indices. Unless explicitly sta-
ted, we assume Einstein’s summation convention, i.e., summation
is made over the appropriate range for any index that is repeated
in an expression. The matrix/vector notation provides us with a
more intuitive interpretation of an object as a linear mapping when
it is placed to the left of another object while the index based nota-
tion is more precise in terms of implementation. Outer products be-
tween vector u;v are sometimes denoted as uvT when it is clear
that the result represents a matrix, and sometimes as u� v when
the result is simply a tensor for which a matrix representation is
not required. Inner products are denoted either as uTv or u � v. Both
operations are sometimes used also for u and v that are not de-
scribed as vectors, e.g., matrices. In this case, outer products simply
means the collection of products between all possible pairs of ele-
ments in the two factors, and an inner product is the scalar formed
as the sum of all products between pairs of elements in the two fac-
tors that have the same index.

The homogeneous coordinates of camera center k is denoted as
nk and satisfies Cknk ¼ 0 (no summation over k here!). For two
cameras, the resulting image coordinates must satisfy the epipolar
constraint

yT
1Fy2 ¼ F � ðy1yT

2Þ ¼ F � ðy1 � y2Þ ¼ 0 ð2Þ

where F is the 3� 3 fundamental matrix related to C1 and C2, [4]. In
the following sections, we will sometimes treat F as a nine-dimen-
sional vector, and in order to make a clear distinction between its
uses as a matrix or a vector, the latter case is denoted by f.

1.2. Multi-linear reconstruction from normalized coordinates

The possibility of reconstructing x as a bilinear combination of
y1 and y2 can be derived from the work on the essential matrix
by Longuet-Higgins [11]. He assumed normalized cameras, i.e.,
the inner calibration parameters are represented by the identity
matrix. The exterior parameters are represented by a 3� 3 rotation
matrix Q and a 3D translation vector t such that �x2 ¼ Q ð�x1 � tÞ,
where �xk are the camera centered 3D coordinates of camera k.
From Eqs. (31) and (32) in [11] it follows directly that

x1 ¼
�x1

1

� �
� y1tT Q T Hy2

yT
1Q T Hy2

 !
where H ¼

0 0 �1
0 0 0
1 0 0

0B@
1CA; ð3Þ

which means that the elements of x can be computed as a linear
mapping on y1 � y2.

Multiplication of yk with a suitable inner calibration matrix and
transformation of x to an arbitrary 3D coordinate system leads to a
more general formulation of the multi-linear mapping from 2D to
3D. This type of derivation, however, has a number of limitations.
For example, there is no easy way to know if this is a unique map-
ping or how large the space of such mappings may be. It also does
not clearly reveal the various interesting properties this mapping
has, some of which are described in Sections 3 and 4.

1.3. This article

In this article we present a purely projective derivation of
multi-linear triangulation mappings in the form of a tensor. As
a result, the 3D coordinates of the reconstructed point can be
computed with only a small set of multiplications in a single
iteration. The original derivation of the tensor was presented
in [12] and is extended here by a detailed presentation of its
3D and 2D covariance properties together with a derivation of
the internal constraints in Section 3. The perturbation analysis
of the reconstructed 3D point with respect to noise in the image
coordinates presented in Section 4 is also novel and is applied to
the optimization procedures described in Section 5. The preli-
minary results of the optimization procedure, originally pre-
sented in [14], are here extended by a method where the
enforcement of the so-called epipolar condition, described in Sec-
tion 3.1, is integrated into the optimization. The main conclusion
drawn from experimental results on real data in Section 6 is that
the proposed method can produce almost as good 2D recon-
struction errors and even better 3D errors as the optimal meth-
od, given that a careful estimation of the triangulation tensor has
been made.

2. Reconstruction of 3D points from two views

In this section we derive the two-view triangulation operator K.
The starting point is the (multiplicative) joint image coordinate2 of
corresponding image points, given by the outer product or tensor
product of the two homogeneous image coordinates:

y1 � y2 � ðC1xÞ � ðC2xÞ ½y1;ay2;b � C1;acxcC2;bdxd�: ð4Þ

A reorganization of the factors gives us with a more operational
description of the mapping from x to y1 � y2:

y1 � y2 � ðC1 � C2Þðx� xÞ ½y1;ay2;b � C1;adC2;b�xdx�� ð5Þ
Y � CX ½Yab � Cabd�Xd�� ½YI � CIJXJ �: ð6Þ

In the last equation, we can see the joint camera mapping
C ¼ C1 � C2 as a 9� 16 matrix that maps X ¼ x� x (reshaped as
a 16-dimensional vector) to the joint image coordinate
Y ¼ y1 � y2 (a nine-dimensional vector).

The next step is to make use of the fact that X ¼ x� x is an ele-
ment of the 10-dimensional subspace of completely symmetric
second order tensor on R4, denoted by X. Let P denote the projec-
tion operator of X, i.e., PX ¼ X for X 2 X and PX0 ¼ 0 for X0 2 X?.
We can represent this P as a 16� 16 matrix, and inserted into
Eq. (6) it gives

Y � CPX ¼MX ½YI � CIJPJLXL ¼ MILXL�: ð7Þ

2 Compare this multiplicative construction of a joint image coordinate of
corresponding image point with the additive joint image formed by a direct vector
sum (concatenation) of the homogeneous image coordinates described by Triggs [16].
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