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a b s t r a c t

This paper describes a new method to calibrate the intrinsic and extrinsic parameters of a generalized
catadioptric camera (central or noncentral). The algorithm has two steps. The first one is the estimation
of correspondences between incident lines in space and pixels (black box model calibration) in an arbi-
trary world reference frame. The second step is the calibration of the intrinsic parameters of the pinhole
camera, the coefficients of the mirror expressed by a quadric (quadric mirror shape and the pose of the
camera in relation to it), the position of the optical center of the camera in the world reference frame and
its relative orientation (pose of the camera in world reference frame). A projection model relaxing Snell’s
Law is derived. The deviations from Snell’s Law and the image reprojection errors are minimized by
means of bundle adjustment. Information about the apparent contour of the mirror can be used to reduce
the uncertainty in the estimation by introducing a new term in the cost function of the second step min-
imization process. Simulations and real experiments show good accuracy and robustness for this frame-
work. However, the convergence is dependent on the initial guess as expected. A well-behaved algorithm
to automatically generate the initial estimate to be used in the bundle adjustment is also presented.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Panoramic vision is a relatively recent chapter of computer
vision which conjugates characteristics such as wide field of view
and poor space resolution, due to the nature of the image forma-
tion. Several other important characteristics often depend on the
type of the projection: central or noncentral. These designations
distinguish between those systems where all incident light rays
intersect in one single point called center of projection (central sys-
tems) and those where such a point does not exist (noncentral
ones). Nowadays, central systems, specially central catadioptric
cameras (made up by one camera and a reflecting mirror), are very
popular and their complexity has been reduced with extensive
work in calibration, 3D-reconstruction, motion, structure from
motion and applications.

Noncentral vision systems in general, and catadioptric ones in
particular, present some advantages over central systems, since
the designer is able to place camera and mirror in unconstrained
positions, allowing zooming and resolution enhancing in some
selected regions of the image, for instance. However, noncentral
catadioptric systems are much less used than central ones, mainly
in applications where some accurate measurements are needed.
The relative complexity of such systems is still high. There is no
robust linear calibration algorithm for them and thus their applica-
tions often require less accuracy. The reason for such situation is

mainly the following one: the non-existence of a projection model
relating 3D points in world to 2D image points. The projection of a
given world point to the image can be calculated by back-project-
ing image pixels until the incident ray pass over the given point.
There are some alternative methods, but all of them are non linear
and implicit. In other words, there is no closed-form expression for
the camera projection, mapping 3D world points to image. For this
reason the accurate calibration of these systems is difficult and also
their use in applications requiring high precision measurements.

Some recent calibration methods provide the correspondence
between pixels and a particular line in space. They are based on
the black box model introduced by Grossberg and Nayar [1] for
which the calibration is no more than this list of correspondences
(pixel ! 3D line). The vision system is therefore considered a
black box model and the path of light rays is unknown as well as
the reflection model. Whether it is central or noncentral it is not
relevant for the method.

Grossberg and Nayar [1] presented a method to calibrate in this
sense general vision systems with structured light patterns and
Sturm and Ramalingam [2] have also formulated a method to cal-
ibrate generalized cameras. Once the calibration is performed the
results can be applied to 3D reconstruction, motion analysis and
several other applications such as described by Pless [3], Ramalin-
gam et al. [4] and others.

In the method of Grossberg and Nayar [1] motion is considered
to be known and binary encoding of image pixels is used to cali-
brate the vision system. On the other hand, the generalized method
presented by Sturm and Ramalingam in [2] uses no more than
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three images acquired by the vision system in three different posi-
tions and the local geometrical description of a calibration object.
The knowledge of the motion between the camera in the three dif-
ferent positions is hence not required. The method provides the
correspondence between each pixel and a 3D ray in space,
expressed in world coordinates (made coincident with the local
reference frame of the first image). No information on the projec-
tion itself is thus present in the calibration and therefore nothing
is known about the intrinsic parameters and type of the camera.
Ramalingam et al. [5] presented an extension of this method to
allow the use of more than three images. Overlapping calibration
grids are used to produce an initial estimate of the calibration
parameters and then pose estimation and bundle adjustment
algorithms are used to improve the estimation results. This proved
to be applicable to a wide variety of camera types expressed as
generalized models.

Catadioptric vision systems made up of cameras and specular
surfaces are specially suitable to these type of calibration methods.
Indeed, in those cases, the projection model is described by several
parameters which are not considered if the calibration is per-
formed in the sense of the black box model. Furthermore, as men-
tioned above, a closed-form projection model exists only when the
projection is central (central catadioptric cameras, see [6–9]) and
no explicit projection model is known for noncentral catadioptric
cameras ([10]). For central catadioptric vision systems there is an
Omnidirectional Calibration Toolbox by Christopher Mei [11]
based on the Camera Calibration Toolbox by Jean-Yves Bouguet
[12].

The alternative class of bundle adjustment methods for camera
calibration requires the knowledge of the projection model that
maps 3D points to the image plane such that the Jacobian of the
projection equations can be evaluated. Since there is no closed-
form projection model for noncentral catadioptric cameras and
hence for its Jacobian, this class of methods has not been used
for their calibration. Numerical evaluations of the projection func-
tion and its Jacobian can however be used to perform the wanted
calibration. Lhuillier [13] recently presented a model for catadiop-
tric camera calibration using numerical evaluations for bundle
adjustment methods.

We are interested in the estimation of the intrinsic and extrinsic
parameters of general catadioptric cameras with quadric mirrors
regardless of being central or not. The method is composed by
two steps. In the first one the system is calibrated in the sense of
a black box model, that is, we assume that the correspondence
pixel ! 3D line is provided by using Grossberg and Nayar method
[1], Sturm and Ramalingam method [2] or by some other method.
We opted to use known motion between dense calibration grids to
perform a stable ray calibration.

The second calibration step presented in the paper proposes the
application of the class of bundle adjustment methods for camera
calibration to general (central or not) catadioptric cameras. The ex-
plicit computation of the Jacobian of the projection equations is
possible due to the relaxation of Snell’s law constraint. The non
existence of closed-form equations for the projection (and hence
the non existence of a means to provide an estimate for the coor-
dinates of the reflection point on the mirror surface) is circum-
vented by the fact that there are available correspondences
between pixels and lines in space and not between pixels and
points in space. The intersections between the direction rays and
the mirror surface thus provide the reflection points.

Bundle adjustment is then applied to the projection model by
using the following parameterization: intrinsic parameters of the
pinhole camera (5 parameters), position and orientation of the
camera in the world reference frame (three rotation angles and
three displacements—6 parameters), the quadric mirror shape
parameters in canonical form (3 parameters) and the position

and orientation of the camera in relation to the mirror (three rota-
tion angles and three displacements—6 parameters). The total
number of parameters of the state vector is 20. We show that bun-
dle adjustment methods are suitable for the calibration of general
catadioptric cameras and that the convergence is generally
achieved both in experiments with simulated data and in experi-
ments with real images. Since bundle adjustment methods require
an initial guess for the state vector, we also provide an automatic
algorithm to compute the initial estimates.

Rotations are parameterized by Euler angles. As is widely
known, usually Euler angles present stability and numerical prob-
lems due to their high non-linear nature. This problem is solved by
using frozen (or cumulative) and update rotation matrices in the
bundle adjustment optimization algorithms. The current estimate
in each iteration is frozen in a rotation matrix and the derivatives
are evaluated in the update angles rather than in the accumulated
angles. This strategy provides very simple Jacobian expressions.
After the update state vector is computed, the next iteration starts
by accumulating the last update in the frozen angles. See for
instance [14,15].

Our method was also previously presented in [16]. As the
approach is similar, some differences exists between the current
improved method and the previously presented. The main
differences are the parameterization of the rotation angles that
were described by quaternions and the parameterization of the
quadric mirror that was previously described by a full rank quadric
matrix. The method is now able to calibrate the shape of the mirror
independently of the pose of the camera in relation to it. This
showed to provide better calibration results. Additionally, a more
comprehensive experimental set of tests is now presented.

In the next section the problem is described and discussed.
Some considerations regarding the mathematical tools used are
discussed and the notation is also presented. Next, Section 3 pre-
sents the projection model relating, in closed-form, the 3D lines
in space with a point in the image plane. The first step of the cal-
ibration method is then discussed in Section 4. In Section 5 we dis-
cuss the minimization of the cost function by means of a bundle
adjustment method and we also discuss and present an automatic
algorithm to compute the initial estimates from where the bundle
adjustment minimization should start. In Section 6 the apparent
contour of the mirror quadric is used to enhance the convergence
of the algorithm, by presenting a new constraint to be added to
the cost function. Section 7 presents the experiments and the re-
sults obtained. Finally, Section 8 contains the main conclusions
and the future directions of the work. In Appendix, we derive the
explicit expressions of the cost function and its Jacobian.

2. Problem statement

Consider a catadioptric vision system made up of a pinhole
camera whose intrinsic parameters are given by matrix K:

K ¼
fu m u0

0 fv v0

0 0 1

264
375 ð1Þ

and a specular mirror surface given by the quadric in its canonical
form:

Q ¼

1 0 0 0
0 1 0 0
0 0 As Bs

0 0 Bs �Cs

26664
37775 ð2Þ

The camera is positioned in the center of the main reference frame
and its poses (position and orientation) relative to the quadric mir-
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