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a b s t r a c t

This article proposes a statistical approach for fast articulated 3D body tracking, similar to the loose-
limbed model, but using the factor graph representation and a fast estimation algorithm. A fast Nonpara-
metric Belief Propagation on factor graphs is used to estimate the current marginal for each limb. All
belief propagation messages are represented as sums of weighted samples. The resulting algorithm cor-
responds to a set of particle filters, one for each limb, where an extra step recomputes the weight of each
sample by taking into account the links between limbs. Applied to upper body tracking with stereo and
colour images, the resulting algorithm estimates the body pose in quasi real-time (10 Hz). Results on
sequences illustrate the effectiveness of this approach.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Vision-based articulated body pose estimation and tracking,
either for monocular, stereo or multiple camera sequences, is a
challenging problem, especially if a real-time algorithm is needed
(see [28] for a recent general survey of vision based human motion
capture). Proposed methods to address this problem can be
roughly classified between deterministic methods [5,9,13,22,30]
and statistical ones [10,11,15,25,39,52]. Deterministic methods
are generally based on the minimisation of a function and can lose
track for fast motions or occlusions because of local minima [10].
The use of multiple cameras around the subject [21,22,29] can
somewhat alleviate this problem by providing occlusion free view-
points. On the other hand statistical methods tend to be more ro-
bust but also more computationally expensive. They generally
take the form of an estimation of the current probability density
of the body parameters using a Bayesian approach.

The main difficulty facing both deterministic and statistical
methods is the high dimension of the body parameters space, espe-
cially when the 3D pose is to be recovered, as opposed to the 2D
projected pose on the image plane of a camera. For the statistical
methods in particular, the random exploration of this state space
is prohibitively expensive, as the number of needed samples grows
exponentially with this dimension. One possibility to avoid this

difficulty is to restrict the pose and movement state to learned spe-
cific cases [3,6,45,48,47,46]. For unrestricted tracking algorithms, a
more intelligent state exploration, using for example covariance
scaled sampling [39] or taking into account the intrinsic ambiguity
of tracking with a monocular camera [40], is needed. Another ap-
proach is to use the image itself to generate the samples, for exam-
ple using a learning method. Parameter sensitive hashing [34]
(PSH) is a learning based method which can be used to sample
the modes of the image likelihood [10]. Coupled with conditional
random fields and grid filters, the PSH method can be used for
real-time articulated body tracking [42]. Regression can also be ap-
plied to learn directly, from a set of scale invariant feature trans-
forms (SIFT) features extracted from the image, the pose of the
body [2].

One limitation of learning algorithms is the representativity of
the learning bases. The variability of body appearance due to light-
ing changes, clothes and limbs deformation, complex backgrounds,
as well as the variability of 3D postures, cannot be covered by any
learning base, even generated synthetically. The number of needed
samples is indeed astronomically high. Prior knowledge is needed
to reduce the complexity of the learning task. The choice of the fea-
tures to extract from the image can be viewed as an example of a
prior, which can reduce the difficulty of the problem. Such features
hopefully are discriminant enough to enable pose estimation and
robust enough to hide a part of the variability above. Not all vari-
ability can be eliminated, however, and the resulting search space
is still very large. Another example of such a prior is the known
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articulated structure of the body. Decomposing the state space into
the product of more simple spaces using this articulated structure
is a natural way to avoid the high dimension of the parameter
state. Indeed, this was the first approach for 2D articulated body
tracking using deterministic algorithms (see for example [20]).
This approach can also be applied to stochastic methods, by repre-
senting the articulated structure as a graphical model [32]. The
estimation of the current pose is then equivalent to a Bayesian esti-
mation on this graphical model. A number of methods can be ap-
plied for this estimation, with the added complication that as the
state space is continuous, a density approximation method must
be used. For example, in [15], the authors discretise the state space
and use the loopy belief propagation algorithm (LBP) [50,53] for
estimation of the body pose in 2D for specific views. The 3D body
pose is recovered using using a standard algorithm [43]. In [36], the
authors use nonparametric belief propagation, a nonparametric
version of the loopy belief propagation algorithm [18] based on
the Monte Carlo (sample set) integration method and representing
messages as sums of Gaussians to estimate a 3D pose, using Gibbs
sampling to estimate the product of such sums. A faster method
based on mode propagation and kernel fitting is proposed in
[16], but only for 2D pose estimation. The nonparametric belief
propagation approach was recently extended to take into account
occlusions for monocular tracking of articulated objects [41,37].
Belief propagation is not the only method for inference and estima-
tion on a graphical model, and a mean field approximation coupled
with a sample set representation can also be used for 2D articu-
lated body tracking [17,52].

For computer vision applications such as human–computer
interfaces (HCI), real-time tracking is a necessity. All these previous
statistical methods, in particular for estimating the 3D pose, are
computationally very expensive and cannot be used for such
real-time applications. Learning based methods can achieve real-
time [42], but with the inherent limitations explained above. In
this paper, we propose a new fast nonparametric belief propaga-
tion approach to track the articulated 3D body pose in real-time.
We choose a model similar to the one used in [36], but with a
new efficient recursive estimation method based on belief propa-
gation on factor graphs [23]. Our method is similar in its approach
to the one proposed by [52], but performs in quasi real-time for 3D
upper body tracking. Compared to the nonparametric belief prop-
agation approach of [41,37], our method does not take into account
the possible occultations between limbs, but is far faster. The key
point of this method is the observation that the most computation-
ally intensive step of nonparametric belief propagation applied to
articulated body tracking is the evaluation of the likelihood of a
sample of a limb on the image. Our method aims to reduce the
computational complexity by fixing the samples used to represent
each limb for one frame. All belief propagation messages are con-
sequently represented as a weighed sum of these samples. Each
sample is evaluated on the image only once for each frame instead
of multiple times as in other belief propagation approaches, thus
considerably reducing the computational cost. A fully recursive
estimation, equivalent to particle filters interacting through belief
propagation, is obtained [4].

The proposed algorithm is applied to tracking the upper body
pose using a stereo camera, in real-time. Instead of 3D points or
voxels we advocate the use of 3D contours as robust features.
These 3D contours are extracted using a disparity estimation in
the vicinity of contour points. The disparity is evaluated indepen-
dently on each side of a contour point to obtain a valid estimation
even for occluding contours. The resulting features are fast to com-
pute as the disparity is evaluated only on a small subset of all im-
age points. These 3D contours are augmented with colour
histograms for hands and head tracking, as head and hands colour
is similar and generally distinctive from the rest of the image. Our

method is focused on tracking knowing the initial pose. Detection
of the initial pose is automatic, obtained by detecting the face and
supposing a natural starting pose of the body (arms roughly along
the torso). The paper is organized as follows. In Section 2 we will
present the general graphical model and theoretically derive our
estimation algorithm, based on belief propagation. Section 3 will
present the specific model used for tracking the upper body in
real-time using a stereo camera, including the images features
and corresponding image compatibility functions. Results will be
presented in Section 4, before a general conclusion.

2. Recursive Bayesian tracking for articulated objects

A statistical method for articulated objects tracking comprises
two parts: the statistical model used to represent the articulated
structure, and the estimation algorithm for this model. Classically,
we use a graphical model to represent the articulated body struc-
ture, and the classical Belief Propagation algorithm as the basis for
our fast estimation algorithm.

2.1. Graphical model

The most simple possibility to represent the articulated struc-
ture as a graphical model is to use a Bayesian tree structure for
the graph, where nodes represent body parts (limbs) and edges
represent links between parts (joints) [32] (see Fig. 1a for a simple
case with three parts). The likelihood of such a structure can be
efficiently estimated for a restricted class of links [12]. However
our goal is also to take into account the time coherence of the body
pose between consecutive discrete sampling times. A solution is to
add edges representing the dependence between the state of the
same part between consecutive times. The resulting graph is a
Bayesian network with loops, and the tree representation cannot
be used (see Fig. 1b). An equivalent approach is to use a Markov
random field (or MRF) with pairwise interactions [15–17,36,37]
(see Fig. 1c). In the general case, links can create cliques of higher
order in the MRF, for example three-node cliques (see Fig. 1d). This
can imply a more complex and computationally intensive estima-
tion algorithm as three-node (or more) cliques are equivalent to
factors of three-node states (or more) in the joint probability in
the general case. To avoid this problem, and to specify the use of
only pairwise factors in the global state probability, we represent
the model by a factor graph [23]. A factor graph directly represents
the decomposition of the global state probability (joint probability
of all part states) as a product of positive factors (of individual part
states). For each MRF, an equivalent factor graph can be con-
structed. Fig. 1e shows the factor graph equivalent to the MRF in
Fig. 1d. In this representation, rectangles represent factor nodes
and circles represent variable nodes (part states), and the factors
of three-node states are clearly visible. Instead of this general mod-
el, we decompose all higher order factors in products of factors of
only two states, to obtain a factor graph with only pairwise factors
(see Fig. 1f). Note that this model is more specific than a Markov
random field: the constraint of using only pairwise factors cannot
be represented with a Markov random field if higher order cliques
are present.

In our case the pairwise factors taken into account are: the pair-
wise factors between the states of two parts at the same time rep-
resenting links between parts (which we call the link factors), the
pairwise factors between the states of each part at two consecutive
times (which we call the time coherence factors), and the pairwise
factors between all parts and their corresponding observations
(which we call the image compatibility factors). For vision based
tracking, the observation linked to one part correspond to features
extracted from a region of one or more images taken at the same
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