Tetrahedron Letters 56 (2015) 1293-1296

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Palladium-catalyzed decarboxylative cross-coupling of 3-pyridyl and 4-pyridyl carboxylates with aryl bromides

Tetrahedror

Lohitha Rao Chennamaneni*, Anthony D. William, Charles W. Johannes

Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology, and Research (A*STAR), 11 Biopolis Way, Helios Block, #03-08, Singapore 138667, Singapore

ARTICLE INFO

ABSTRACT

Decarboxylative cross-coupling of 3-pyridyl and 4-pyridyl carboxylates with aryl bromides is reported. Using a bimetallic system of Cu_2O and $Pd(PPh_3)_4$, the scope of the reaction is demonstrated by the synthesis of 27 pyridine-containing biaryls in moderate to good yields.

© 2015 Elsevier Ltd. All rights reserved.

Article history: Received 10 September 2014 Revised 22 December 2014 Accepted 20 January 2015 Available online 3 February 2015

Keywords: Decarboxylative coupling 3-Pyridyl and 4-pyridyl carboxylates Aryl bromides Palladium catalysis Copper

Pyridine-containing heterobiaryls represent privileged structural units and are frequently found in pharmaceuticals, natural products, bioactive molecules, and organic ligands.¹ The 3- or 4aryl-substituted pyridine motifs are a subclass of heterobiaryls and are present in a number of important pharmaceuticals and small molecules (Fig. 1).

Stoichiometric pyridyl organometallic reagents have been extensively employed to prepare pyridine-containing biaryl motifs. In this context, 3- and 4-pyridyl organometallics used in crosscoupling reactions have proven to be more challenging than simple aryl organometallics. This difficulty is presumably due to the instability and slow rate of transmetalation,^{1b} attributed to the electron deficiency of the pyridine ring. In spite of these hurdles, transitionmetal-catalyzed cross-coupling methods such as Suzuki,² Stille,³ and others⁴⁻⁶ exist for the use of these 3- and 4-pyridyl organometallics in coupling reactions. A major limitation with the aforementioned approaches is the stoichiometric synthesis of a reactive metal species. Notable alternative methods have recently emerged such as direct arylation of pyridine through C–H bond activation.⁷ While this approach would be ideal from an atom economy perspective, the regioselectivity remains a significant limitation. Decarboxylative cross-coupling provides a catalytic approach to the synthesis of biaryls, which would additionally obviate the regioselectivity issue. The extrusion of carbon dioxide is not as atom economical, but it is a gaseous waste that does not need to be

Figure 1. Bioactive 3-aryl and 4-aryl pyridine derivatives.

separated from the desired product.⁸ Several groups such as those of Goossen,⁹ Forgione,¹⁰ and others¹¹ have demonstrated the synthesis of biaryls and heterobiaryls via decarboxylative cross-coupling. Studies by Myers¹² and others¹³ also highlight the synthetic utility of related decarboxylative reactions. Although decarboxylative coupling has been utilized in organic synthesis, only a few reports are available which employ pyridine carboxylic acids as coupling partners. More recently, Wu^{14a} and Stoltz^{14b}

^{*} Corresponding author. Tel.: +65 67998510; fax: +65 68745870. *E-mail address*: lohitha_rao@ices.a-star.edu.sg (L.R. Chennamaneni).

Scheme 1. Decarboxylative cross-coupling reactions of pyridine carboxylic acids.

independently reported the decarboxylative cross-coupling between pyridine-2-carboxylic acid (or) potassium pyridine-2-carboxylate and aryl bromides (Scheme 1, Eq. 1). Goossen et al. demonstrated the decarboxylative cross-coupling of potassium pyridine-3-carboxylate with an aryl triflate^{9c} or aryl tosylate^{9h} (Scheme 1, Eq. 2). However, to the best of our knowledge, an example of the decarboxylative cross-coupling of pyridine-3-carboxylic acid with aryl halides has not been reported, and that of pyridine-4-carboxylic acid is rare (Scheme 1, Eq. 3).¹⁵ Herein, we report a

Table 1

Optimization of the reaction conditions^a

more general method for the decarboxylative cross-coupling of both 3-pyridyl and 4-pyridyl carboxylates with aryl bromides for the synthesis of 3- or 4-arylpyridines (Scheme 1, Eq. 4), which are of interest in medicinal chemistry (Fig. 1).

Our study began by testing the Pd-catalyzed decarboxylative coupling of potassium pyridine-3-carboxylate with 4-bromotoluene (Table 1). Initial results using a similar bimetallic catalyst system reported by Wu and co-workers,^{14a} PdCl₂ and Cu₂O with BINAP as a ligand in DMA under microwave irradiation, provided a 22% yield of the desired product (Table 1, entry 1). Switching the palladium precatalyst (PdCl₂) to the palladium catalyst [Pd(PPh₃)₄] improved the yield to 30% (Table 1, entry 2). Interestingly, decreasing the Pd-catalyst loading from 5 mol % to 2.5 mol % did not alter significantly the yield (Table 1, compare entries 2 and 3). Other bidentate and monodentate phosphine ligands such as Xantphos and X-phos were evaluated but failed to improve the yields (Table 1, entries 4 and 5). Although phosphines such as BINAP are known to be effective ligands for copper(I),^{14a,16} and the exact mechanism of the reaction is not clearly understood, we hypothesized that nitrogen-containing ligands might help to facilitate decarboxylation.¹⁷ Both mono and bidentate ligands were screened. The monodentate ligand pyridine gave a comparable yield to the phosphine ligands (35% yield, Table 1, entry 6). Bidentate N-ligands such as 2,2'-bipyridine and 1,10-phenanthroline provided a marked improvement with yields of 53% and 72%, respectively (Table 1, entries 7 and 8). This result indicates that the bite angle plays a critical role in the decarboxylation. To explore the potential effect of the phosphine ligand on these optimized conditions, other Pd(0) and Pd(II) sources in combination with a phosphine ligand (10 mol %) as an additive were screened. No improvement was observed providing a range of yields of 30-58% (Table 1, entries 9-13). Replacing Cu₂O with other Cu salts such as CuI or CuBr gave much lower yields (Table 1, compare entries 8 with 14 and 15). The influence of several polar

Entry	Additive	Pd source	Ligand	Solvent	Yield ^b (%)
1 ^c	Cu ₂ O	PdCl ₂	BINAP	DMA	22
2 ^c	Cu_2O	$Pd(PPh_3)_4$	BINAP	DMA	30
3	Cu ₂ O	$Pd(PPh_3)_4$	BINAP	DMA	28
4	Cu ₂ O	$Pd(PPh_3)_4$	Xantphos	DMA	17
5	Cu ₂ O	$Pd(PPh_3)_4$	XPhos	DMA	12
6	Cu ₂ O	$Pd(PPh_3)_4$	Pyridine	DMA	35
7	Cu ₂ O	$Pd(PPh_3)_4$	2,2'-Bipyridine	DMA	53
8	Cu ₂ O	Pd(PPh ₃) ₄	1,10-Phenanthroline	DMA	72
9 ^d	Cu ₂ O	Pd ₂ (dba) ₃ +PPh ₃	1,10-Phenanthroline	DMA	30
10 ^d	Cu ₂ O	PdCl ₂ +PPh ₃	1,10-Phenanthroline	DMA	55
11 ^d	Cu ₂ O	$Pd(OAc)_2 + PPh_3$	1,10-Phenanthroline	DMA	35
12 ^d	Cu ₂ O	Pd(acac) ₂ +PPh ₃	1,10-Phenanthroline	DMA	58
13 ^d	Cu ₂ O	Pd(acac) ₂ +XPhos	1,10-Phenanthroline	DMA	30
14	CuI	$Pd(PPh_3)_4$	1,10-Phenanthroline	DMA	15
15	CuBr	$Pd(PPh_3)_4$	1,10-Phenanthroline	DMA	24
16	Cu ₂ O	$Pd(PPh_3)_4$	1,10-Phenanthroline	NMP	36
17	Cu ₂ O	$Pd(PPh_3)_4$	1,10-Phenanthroline	DMF	48
18	Cu ₂ O	$Pd(PPh_3)_4$	1,10-Phenanthroline	Diglyme	28
19	Cu ₂ O	$Pd(PPh_3)_4$	1,10-Phenanthroline	DMSO	12

Values in bold face indicate best optimized reaction conditions employed to study substrate scope.

a Reaction conditions: 1 (0.5 mmol), 2a (0.75 mmol), Cu (0.15 mmol), Pd (2.5 mol %), ligand (10 mol %), solvent (3.0 mL), 60–180 °C, µw, 4 h.

^b Isolated yield based on **1**.

^c 5 mol % palladium catalyst

^d 10 mol % P-ligand.

Download English Version:

https://daneshyari.com/en/article/5263370

Download Persian Version:

https://daneshyari.com/article/5263370

Daneshyari.com