Tetrahedron Letters 55 (2014) 6851-6855

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Trifluoromethylated allyl alcohols: acid-promoted reactions with arenes and unusual 'dimerization'



Tetrahedro

Anna N. Kazakova<sup>a</sup>, Roman O. Iakovenko<sup>a</sup>, Vasiliy M. Muzalevskiy<sup>b</sup>, Irina A. Boyarskaya<sup>a</sup>, Margarita S. Avdontceva<sup>a</sup>, Galina L. Starova<sup>a</sup>, Aleksander V. Vasilyev<sup>a,c,\*</sup>, Valentine G. Nenajdenko<sup>b,\*</sup>

<sup>a</sup> Department of Organic Chemistry, Saint Petersburg State University (SPbSU), Universitetsky pr., 26, Saint Petersburg 198504, Russia <sup>b</sup> Department of Chemistry, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow 119899, Russia <sup>c</sup> Department of Organic Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg 194021, Russia

#### ARTICLE INFO

Article history: Received 23 August 2014 Revised 27 September 2014 Accepted 14 October 2014 Available online 18 October 2014

Keywords: CF<sub>3</sub>-allyl alcohols CF<sub>3</sub>-alkenes Iron trichloride Fluorinated indanes CF<sub>3</sub>-allyl carbocations

### ABSTRACT

An unusual 'dimerization' of CF<sub>3</sub>-allyl alcohols [ArCH=CHCH(OH)CF<sub>3</sub>] under the action of anhydrous FeCl<sub>3</sub> was found to give fluorinated indanes in 62–90% yields via the formation of intermediate allyl cations. Reactions of CF<sub>3</sub>-allyl alcohols with arenes (Ar'H) led to CF<sub>3</sub>-alkenes [Ar(Ar')CHCH=CHCF<sub>3</sub>] in 48–75% yields. The mechanisms of the transformations are discussed.

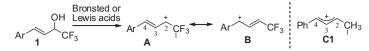
© 2014 Elsevier Ltd. All rights reserved.

Fluorinated organic compounds have significant theoretical and practical value in chemistry, biology, medicine, and materials science.<sup>1,2</sup> Incorporation of a fluorinated moiety into a molecule often changes important parameters such as lipophilicity, metabolic activity, and bioavailability. The electron-withdrawing character of fluorinated groups is another advantage, which allows one to control transformations of fluorinated compounds. Examples of CF<sub>3</sub>-substituted carbocations are very promising, but are still a rare type of fluorinated species exhibiting high electrophilicity and selectivity.<sup>3</sup>

The present work is a continuation of our investigations on the electrophilic activation of alkenes<sup>4</sup> and alkynes.<sup>5</sup> The reactions of CF<sub>3</sub>-substituted allyl alcohols **1** promoted by Brønsted or Lewis acids were investigated. Dehydroxylation of **1** can lead to allyl cations having resonance forms **A** and **B** (Table 1). However, due to the strong electron-withdrawing character of the CF<sub>3</sub>-group, form **A** is destabilized significantly. As a result, very selective reaction can be expected of such cations at position 4 of form **B**. To confirm this hypothesis we performed DFT calculations on CF<sub>3</sub>-allyl cations bearing various substituents on the arene ring and the CH<sub>3</sub>-substituted allyl cation **C1**.<sup>6</sup> The global electrophilicity indices,  $\omega$  (14.1–

16.6 eV) for the CF<sub>3</sub>-cations **B1–B5** are significantly higher than the  $\omega$  value (13.4 eV) for the cation **C1**, therefore cations **B1–B5** are much more electrophilic. Due to the electron-withdrawing effect of the CF<sub>3</sub>-group, cation **B1** has a greater charge on C-4 and a lower charge on C-2, in comparison with **C1** having similar charges for both C-2 and C-4. As a result, the DFT calculations predict highly selective reactions for trifluoromethylated allyl cations **B1–B5**.

One of the most important transformations of substituted allyl cations<sup>7</sup> is their participation in new carbon—carbon bond forming reactions by reactions with arenes,<sup>8</sup> heteroarenes,<sup>9</sup> alkenes,<sup>10</sup> alkynes,<sup>11</sup> or carbonyl compounds.<sup>12</sup> To our surprise, reactions of trifluoromethylated allyl cations with C-nucleophiles have not been described to date.


To start our investigation, a series of CF<sub>3</sub>-allyl alcohols were prepared by reduction of  $\alpha$ , $\beta$ -unsaturated trifluoromethyl ketones<sup>13</sup> using a literature procedure.<sup>14</sup> Initially, we studied the reaction of **1a** with benzene under treatment with various Brønsted and Lewis acids (Table 2). Indeed, the expected alkene **2a** was obtained through formation of the corresponding cation **B** in protic acids (H<sub>2</sub>SO<sub>4</sub>; CF<sub>3</sub>CO<sub>2</sub>H was too weak) and superacids (FSO<sub>3</sub>H, TfOH) (entries 1–5). The reaction is highly diastereoselective forming only the *E*-isomer of **2a**. Moreover, unusual 'dimeric' diastereomeric indane derivatives **3a**,a' were also isolated. Yields of the compounds **2a** (21–33%) and **3a**,a' (22–44%) are roughly equal (entries 1, 3, 4, 7, and 10, Table 1), which reflects an



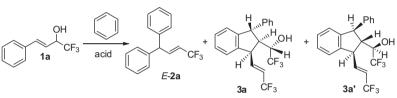
<sup>\*</sup> Corresponding authors. *E-mail addresses:* aleksvasil@mail.ru (A.V. Vasilyev), nen@acylium.chem.msu.ru (V.G. Nenajdenko).

#### Table 1

Formation of CF<sub>3</sub>-allyl cations and selected characteristics of the cations B1-B5, and C1



**B1** Ar = Ph; **B2** Ar = 4-MeC<sub>6</sub>H<sub>4</sub>; **B3** Ar = 4-ClC<sub>6</sub>H<sub>4</sub>; **B4** Ar = 3-MeC<sub>6</sub>H<sub>4</sub>; **B5** Ar = 4-MeOC<sub>6</sub>H<sub>4</sub>


| Cation | $E_{\rm HOMO}~(\rm eV)$ | $E_{LUMO}$ (eV) | $\omega^{a}$ (eV) | $q(C-2)^{b}(e)$ | $q(C-4)^{b}(e)$ |
|--------|-------------------------|-----------------|-------------------|-----------------|-----------------|
| C1     | -11.54                  | -7.97           | 13.4              | 0.10            | 0.08            |
| B1     | -12.18                  | -8.75           | 16.0              | -0.05           | 0.09            |
| B2     | -11.89                  | -8.43           | 14.9              | -0.07           | 0.08            |
| B3     | -11.88                  | -8.66           | 16.4              | -0.06           | 0.08            |
| B4     | -11.71                  | -8.60           | 16.6              | -0.06           | 0.10            |
| B5     | -11.88                  | -8.01           | 14.1              | -0.09           | 0.04            |

<sup>a</sup> Global electrophilicity index.

<sup>b</sup> Natural charges.

#### Table 2

Acid-promoted reactions of 1a with benzene



| Entry | Reaction conditions                   |                     |                 |                       | Yield (%)       |       |
|-------|---------------------------------------|---------------------|-----------------|-----------------------|-----------------|-------|
|       | Acid                                  | 1a/PhH/acid ratio   | T (°C)          | Time (h)              | 2a              | 3a+a′ |
| 1     | TfOH <sup>a</sup>                     | 1:3:50              | -35             | 1                     | 33              | 22    |
| 2     | TfOH                                  | 1:15:50             | 20              | 1                     | Oligomers       |       |
| 3     | FSO <sub>3</sub> H <sup>b</sup>       | 1:3:86              | -75             | 1                     | 24              | -     |
| 4     | $H_2SO_4$                             | 1:16:268            | 20              | 1                     | 22              | 38    |
| 5     | CF <sub>3</sub> CO <sub>2</sub> H     | 1:50:5              | 20              | 1                     | No reaction     |       |
| 6     | <b>FeCl</b> <sub>3</sub> <sup>⊂</sup> | 1:50:1 <sup>c</sup> | 20 <sup>c</sup> | <b>1</b> <sup>c</sup> | 65 <sup>℃</sup> | _     |
| 7     | FeCl <sub>3</sub> <sup>a</sup>        | 1:1.1:1             | 20              | 1                     | 32              | 40    |
| 8     | AlCl <sub>3</sub>                     | 1:50:1              | 20              | 1                     | 21              | -     |
| 9     | AlBr <sub>3</sub>                     | 1:50:2              | 20              | 1                     | Oligomers       |       |
| 10    | BF <sub>3</sub> ·Et <sub>2</sub> O    | 1:50:1              | 20              | 72                    | 32              | 44    |
| 11    | BBr <sub>3</sub>                      | 1:50:1              | 20              | 1                     | Oligomers       |       |
| 12    | TiCl4 <sup>d</sup>                    | 1:50:1              | 20              | 1                     | 30              | -     |
| 13    | GaCl <sub>3</sub>                     | 1:50:1              | 20              | 1                     | No reaction     |       |
| 14    | InCl <sub>3</sub>                     | 1:50:1              | 20              | 1                     | No reaction     |       |
| 15    | CuBr <sub>2</sub>                     | 1:50:1              | 20              | 1                     | No reaction     |       |
| 16    | SnCl <sub>4</sub>                     | 1:50:1              | 20              | 1                     | No reaction     |       |
| 17    | ZnCl <sub>2</sub>                     | 1:50:1              | 20              | 1                     | No reaction     |       |
| 18    | ZnBr <sub>2</sub>                     | 1:50:1              | 20              | 1                     | No reaction     |       |
| 19    | $Sc(OTf)_3$                           | 1:50:1              | 20              | 1                     | No reaction     |       |
| 20    | $In(OTf)_3$                           | 1:50:1              | 20              | 1                     | No reaction     |       |
| 21    | Fe(OTf) <sub>2</sub>                  | 1:50:1              | 20              | 1                     | No reaction     |       |
| 22    | $Cu(OTf)_2$                           | 1:50:1              | 20              | 1                     | No reaction     |       |

<sup>a</sup> Solvent =  $CH_2Cl_2$ .

<sup>b</sup> Solvent =  $SO_2$ .

<sup>c</sup> The best result for preparation of *E*-2a.

<sup>d</sup> The main reaction product (yield 45%) was compound *E*-**4a**, PhCH=CHCH(Cl)CF<sub>3</sub>.

approximately equal probability of reaction of intermediate cation **B1** in two different pathways under these particular reaction conditions.

The formed dimer is a result of the domino reaction of two molecules of **1a** to form two new C—C bonds. Among the Lewis acids (entries 6–22), the highest yield of compound **2a** was obtained with anhydrous FeCl<sub>3</sub>. In this case alcohol **1a** gave *E*-**2a** as the only reaction product with excess benzene (entry 6). Reaction of equimolar amounts of **1a** and benzene afforded preferentially **3a**,**a'** (Entry 7). The other Lewis acids tested were found to be less effective giving lower yields of **2a**. Moreover, in most cases, no reaction took place (entries 13–22). FeCl<sub>3</sub> seems to be more 'oxophilic'

| Table 3       |                |      |       |
|---------------|----------------|------|-------|
| Transformatio | n of <b>1a</b> | into | 3a,a′ |

| Entry | Acid                             | <b>1a</b> :acid<br>ratio | T (°C) | Time (h) | <b>3a+a</b> ' (%)<br>/ <b>a:a</b> ' ratio |
|-------|----------------------------------|--------------------------|--------|----------|-------------------------------------------|
| 1     | FeCl <sub>3</sub> <sup>a</sup>   | 1:1                      | 20     | 1        | 62/1:1                                    |
| 2     | FeCl <sub>3</sub> <sup>a</sup>   | 1:0.5                    | 20     | 1        | 60/1.2:1                                  |
| 3     | BF3·Et2Oa                        | 1:1                      | 20     | 48       | 45/1.2:1                                  |
| 4     | TiCl <sub>4</sub> <sup>a,b</sup> | 1:1                      | 20     | 1        | 11/1:2.7                                  |
| 5     | TfOH                             | 1:50                     | -35    | 1        | 30/1.1:1                                  |

<sup>a</sup> Solvent =  $CH_2Cl_2$ .

<sup>b</sup> E-**4a** was obtained as the major product in 51% yield (see structure in footnote 'c' in Table 1, entry 12).

Download English Version:

## https://daneshyari.com/en/article/5263692

Download Persian Version:

https://daneshyari.com/article/5263692

Daneshyari.com