ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

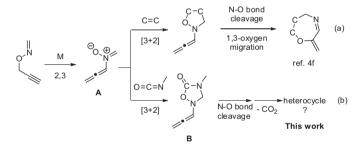
Synthesis of 1,6-dihydropyrimidines via copper-catalyzed multistep cascade reactions between *O*-propargylic aldoximes and isocyanates

Itaru Nakamura ^{a,*}, Toshiki Onuma ^b, Dong Zhang ^b, Masahiro Terada ^{a,b}

^a Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

ARTICLE INFO

Article history: Received 1 November 2013 Revised 9 December 2013 Accepted 25 December 2013 Available online 3 January 2014


Keywords: Cascade reaction Copper-catalyzed Rearrangement Alkyne Oximes

ABSTRACT

Multi-step cascade reactions of O-propargylic oximes with isocyanates were carried out in the presence of copper catalysts to afford the corresponding 1,6-dihydropyrimidines in good yields. The multi-step reactions consisted of a 2,3-rearrangement, a [3+2] cycloaddition, decarboxylative ring opening involving a 1,4-hydrogen shift, and a 6π -electrocyclization.

© 2014 Elsevier Ltd. All rights reserved.

Multi-step cascade reactions have been proven to provide highly efficient transformations in the synthesis of highly elaborate molecules starting from readily available compounds in a single operation.1 The attractive feature of such methodology can be attributed to the continuous generation of reactive and often elusive intermediates that are kinetically or thermodynamically unstable and/or difficult to prepare. In many cases, such cascade reactions can be triggered by π -acidic metal catalysts that can generate the reactive species in the initial step, under mild reaction conditions, under high tolerances of various functional groups.^{2,3} Recently, we reported that N-allenylnitrone intermediate A can be efficiently generated from O-propargylic oximes via π -acidic copper-catalyzed 2,3-rearrangement (Scheme 1).4 More recently, we carried out the intermolecular cascade reactions involving electron-deficient olefins such as maleimides and fumaric acid esters (Scheme 1a).4f The reactions proceeded via a [3+2] cycloaddition between N-allenylnitrone A and the olefin, followed by a N-O bond cleavage resulting in a 1,3-oxygen migration. In contrast, we envisioned that the sequence of [3+2] cycloaddition/N-O bond cleavage should proceed differently for reactions involving isocyanates as the dipolarophile because N-allenyloxadiazolidinone species **B** would favor the liberation of CO₂ rather than undergo a 1,3-oxygen migration (Scheme 1b).^{5,6} Herein, we report on the copper-catalyzed reactions of O-propargylic aldoximes 1 and isocyanates 2, in which the multi-step cascade sequence proceeded

Scheme 1. [3+2] Cycloaddition followed by N–O bond cleavage for *N*-allenylnitrone intermediate **A** with (a) olefins and (b) isocyanates (present work).

via a 2,3-rearrangement, a [3+2] cycloaddition, decarboxylative ring opening involving a 1,4-hydrogen migration, and a 6π -electrocyclization, to afford the corresponding 1,6-dihydropyrimidines **3** in good yields (Eq. 1).

Initially, the reaction conditions were optimized using (*E*)-**1a** and *N*-(*p*-toluenesulfonyl)isocyanate **2a** (1.2 equiv), as summarized in Table 1. The reaction was carried out in 1,2-dichloroethane

^b Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

^{*} Corresponding author. Tel.: +81 22 795 6754; fax: +81 22 795 6602. E-mail address: itaru-n@m.tohoku.ac.jp (I. Nakamura).

Table 1 Optimization of the reaction conditions

	Catalyst	Ligand	2	Time (h)	Yield ^a (%)		
					3	4	5
1	CuCl	None	2a	7	44	15	12
2	CuBr	None	2a	5	43	21	6
3	CuI	None	2a	21	42	18	5
4	[CuCl(cod)] ₂ ^b	None	2a	2	33	25	7
5	Cu(OAc) ₂	None	2a	4	45	8	13
6	[Cu(CH ₃ CN) ₄]PF ₆	None	2a	2	36	20	<1
7	none	None	2a	48 ^c	<1	4	<1
8	CuBr	None	2b	12	24	36	6
9	CuBr	None	2c	48	<1	<1	<1
10	CuBr	None	2d	10	10	6	25
11	CuBr	PtBu₃	2a	6	48	19	6
12	CuBr	PCy_3	2a	6	45	18	9
13	CuBr	SPhos	2a	12	51	16	7
14	CuBr	PPh_3	2a	23	33	18	24
15	CuCl	SPhos	2a	24	40	13	<1
16	$Cu(OAc)_2$	SPhos	2a	12	44	9	14
17 ^d	CuBr	SPhos ^e	2a	18	58 ^f	16	<1

^a The yields were determined by ¹H NMR using dibromomethane as an internal standard.

Table 2Substitution effects at the oxime moiety^a

	1	R^3	Time (h)	Product (% yield)			
				3 ^b	6 [€]	4 ^c	
1	1b	p-F ₃ CC ₆ H ₄	24	3e (39)	6e (4)	4e (21)	
2	1c	p-ClC ₆ H ₄	14	3f (51)	6f (7)	4f (18)	
3	1a	Ph	18	3a (56)	6a (8)	4a (16)	
4	1d	p-MeOC ₆ H ₄	12	3g (52)	6g (21)	4g (11)	
5	1e	Су	6	3h (30)	_	4h (17)	

^a The reactions of (E)-1 (0.20 mmol) and N-tosylisocyanate 2a (0.24 mmol) were carried out in the presence of CuBr (10 mol %) and SPhos (11 mol %) in 1,2-dichloroethane (0.8 mL) at 80 °C.

(DCE), in the presence of CuBr (10 mol %), at 80 °C to afford 2,4,6-triphenyl-1-tosyl-1,6-dihydropyrimidine $\bf 3a$ (43% yield), along with *N*-tosylbenzaldimine $\bf 4a$ (21% yield), and the four-membered cyclic nitrone $\bf 5a$ (6% yield) (entry 2).⁷ Cu(I) and Cu(II) salts such as CuCl, Cul, and Cu(OAc)₂ exhibited comparable catalytic

activities, whereas the use of [CuCl(cod)]₂ or [Cu(CH₃CN)₄]PF₆ resulted in a lower yield (entries 1–6). The use of transition metal salts such as AgOTf, AuCl, PtCl₂, and InCl₃ did not promote the present reaction (See Supporting information). The reaction in the absence of copper catalysts did not afford the desired product **3a** at

^b 5 mol %.

^c 65% of **1a** was recovered.

^d 0.25 M.

e 11 mol % of SPhos was used.

f 9% of 6a was obtained.

b Isolated yields.

^c The yields were determined by ¹H NMR using dibromomethane as an internal standard.

Download English Version:

https://daneshyari.com/en/article/5263773

Download Persian Version:

https://daneshyari.com/article/5263773

<u>Daneshyari.com</u>