
Tetrahedron Letters 55 (2014) 1243-1246

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of chiral butenolides using amino-thiocarbamatecatalyzed asymmetric bromolactonization

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

ARTICLE INFO

Article history: Received 20 October 2013 Revised 3 December 2013 Accepted 2 January 2014 Available online 8 January 2014

Keywords: Bromolactonization Catalysis Lewis base Asymmetric reaction

ABSTRACT

The asymmetric cyclization of 4,4-disubstituted 3-butenoic acids is studied. Amino-thiocarbamates are used as the catalysts and *N*-bromosuccinimide is used as the stoichiometric halogen source. The resulting γ -butanolide products are readily converted into the corresponding γ -butenolides (up to 58% ee) derivatives in one-pot.

© 2014 Elsevier Ltd. All rights reserved.

The area of enantioselective synthesis of halolactones from prochiral olefins has witnessed a recent flurry of reports to tackle this long-standing problem.¹ In our laboratory, we discovered that the cinchona alkaloid derived amino-thiocarbamates offer a framework for catalyst modification to accommodate a number of olefinic acids of various substitution patterns (Scheme 1).²

While the advances have enabled the synthesis of various useful chiral halolactone motifs, reports on asymmetric halolactonizations of alkenoic acids with a tri-substituted olefin remain scarce.^{3,4} Herein we describe our recent progress on the asymmetric bromocyclization of 4,4-disubstituted 3-butenoic acids **1**. Amino-thiocarbamate and *N*-bromosuccinimide (NBS) were used as the catalyst and the stoichiometric halogen source, respectively. The result is a stereochemically defined γ -butanolide **2** which can readily be converted into a γ -butenolide **3** by a simple base-mediated elimination (vide infra) (Scheme 2).

The synthesis of γ -butano- and γ -butenolides would be particularly useful as such motifs rank among the most prevalent subunits found in natural isolates and pharmaceutically useful organic molecules.⁵ Many of these compounds exhibit diverse biological properties such as anti-inflammatory, antibacterial, antifungal, or phytotoxic activities, with several having been described as potential antitumor and anticancer agents, or antimalarial, antituberculosis, anti-aldosteronic and anti-asthmatic drug candidates (Fig. 1).

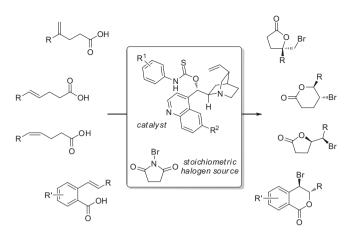
The olefinic acid substrates **1** were synthesized via Knoevenagel condensation of aldehyde **6**, as reported by Rousseau and

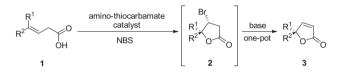
co-workers.^{3c} Aldehyde **6** could readily be prepared from ketone **4** through a $4 \rightarrow 5 \rightarrow 6$ sequence (Scheme 3). Alternatively, olefinic acid **1** could be furnished in one-step from ketone **4** by reacting with Wittig salt **7** using sodium bis(trimethylsilyl)amide as the base, although the yield was not promising.⁶

In the initial phase, amino-thiocarbamates derived from four cinchona alkaloid cores were evaluated for their potential to catalyze asymmetrically the bromolactonization. Alkenoic acid **1a** was used as the model substrate and the reaction was conducted in chloroform at $-50 \,^{\circ}\text{C}$ (Table 1). The work-up of the reaction revealed not only the formation of the bromolactone **2a**, but also the elimination product **3a** (**2a**:**3a** = 10:1). The product mixture containing **2a** and **3a** was duly converted into **3a** by adding triethylamine during the work-up process. Consequently, evaluation of the enantioselectivity of the reaction was based on that of butenolide **3a**.

The result of the catalyst screening showed that the cinchonine derived catalyst **8a** was the best with 46% ee (Table 1, entry 1). The amino-thiocarbamates with the pseudo enantiomeric cinchonidine and quinine cores afforded **3a** of opposite stereo-configuration (entry 3). Contrary to our previous reports, the presence of a 6-alk-oxy substituent on the catalyst framework did not lead to positive enhancement of the ee of the reaction (Table 1, entry 1 vs 2, entry 3 vs 4). We also found that carbamate catalyst **12** returned a much lower ee, which verifies the importance of the Lewis basic sulfur atom.

The *N*-aryl substituent on **8** was then varied in an attempt to improve the ee. It was found that 4- and 3-alkoxyphenyl substituents had only a small effect on the enantioselectivity (Table 1, entries 6–9), whereas 2-alkoxyphenyl substitution significantly



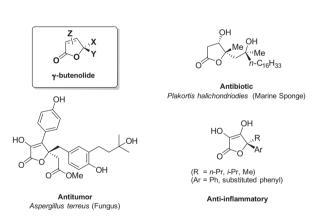
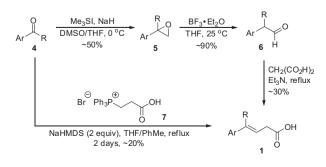

CrossMark

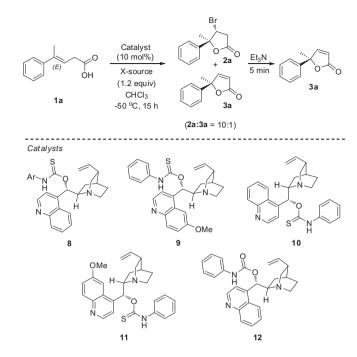
^{*} Corresponding author. Tel.: +65 65167760; fax: +65 67791691. *E-mail address:* chmyyy@nus.edu.sg (Y.-Y. Yeung).

^{0040-4039/\$ -} see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2014.01.009

Scheme 1. Amino-thiocarbamate-catalyzed asymmetric bromolactonization.

Scheme 2. Amino-thiocarbamate catalyzed asymmetric bromolactonization of 4,4-disubstituted 3-butenoic acid **1**.


Figure 1. Selected examples of natural products and potential drug molecules containing the γ -butano- or γ -butenolide moiety.

Scheme 3. Synthesis of olefinic acid substrates 1.

Table 1

Evaluation of amino-thiocarbamates as asymmetric catalysts

Entry ^a	Cat.	Ar	X-source	Yield (%)	ee (%)
1	8a	C ₆ H ₅	NBS	98	46
2	9	-	NBS	99	38
3	10	-	NBS	99	-33
4	11	-	NBS	99	-29
5	12	-	NBS	95	12
6	8b	4-MeO-C ₆ H ₄	NBS	99	45
7	8c	4-EtO-C ₆ H ₄	NBS	99	46
8	8d	$4-(t-BuO)-C_6H_4$	NBS	99	44
9	8e	3-MeO-C ₆ H ₄	NBS	99	40
10	8f	2-MeO-C ₆ H ₄	NBS	99	16
11	8g	2,4-(MeO)2-C6H3	NBS	99	14
12	8h	2,4,6-(MeO) ₂ -C ₆ H ₃	NBS	84	7
13	8i	4-Me-C ₆ H ₄	NBS	99	40
14	8j	3,5-(CF ₃) ₂ -C ₆ H ₃	NBS	96	20
15	8k	$4-NO_2-C_6H_4$	NBS	81	32
16	8a	C ₆ H ₅	NBP	99	48
17	8a	C ₆ H ₅	DBDMH	99	40
18	8a	C ₆ H ₅	TABCO	93	6
19	8a	C ₆ H ₅	NIS	99	15
20	8a	C ₆ H ₅	NCS	NR	_
21	8a	C ₆ H ₅	DBDMH	15	0

^a Reactions were carried out with alkenoic acid **1** (0.1 mmol), NBS (0.12 mmol), catalyst **8a** (0.01 mmol) in CHCl₃/hexane (1:1) (3.0 mL).

diminished the ee (Table 1, entries 10-12). In addition, relatively less electron-donating or highly electron-deficient substituents returned lower ees (Table 1, entries 13–15). Thus, catalyst **8a** was selected for further development.

Examination of other halogenation sources was also conducted. *N*-Bromophthalimide (NBP) afforded a minor enhancement in the enantioselectivity, while the more reactive Br-sources, 1,3-dibro-mo-2,2-dimethylhydantoin (DBDMH) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TABCO) returned eroded ees (Table 1, entries 16–18). Similar to our previous observation,² the iodinating agent *N*-iodosuccinimide (NIS) gave a much lower ee, and the use of chlorinating agents gave sluggish reactions (Table 1, entries 19–21).

Download English Version:

https://daneshyari.com/en/article/5263788

Download Persian Version:

https://daneshyari.com/article/5263788

Daneshyari.com