Tetrahedron Letters 58 (2017) 4277-4280

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Reaction of 2-propargylphenylcarbamates with diphenyliodonium salts via Meyer-Schuster rearrangement

etrahedro

Hideki Minami^a, Noriko Okamoto^a, Takuya Sueda^a, Takatsugu Sakaguchi^a, Minoru Ishikura^b, Reiko Yanada^{a,*}

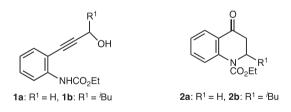
^a Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan ^b School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan

ARTICLE INFO

Article history: Received 31 August 2017 Revised 21 September 2017 Accepted 26 September 2017 Available online 28 September 2017

Keywords: Quinolone Meyer-Schuster rearrangement Michael addition Indenone Friedel-Crafts alkylation

ABSTRACT


The syntheses of 2,3-dihydro-4-quinolones from 2-propargylphenylcarbamates by one-pot tandem process that involves Meyer-Schuster rearrangement or arylative Meyer-Schuster rearrangement/Michael addition of carbamate nitrogen to the resulting vinyl ketones have been developed. Phenylcarbamates tethering tertiary propargyl alcohols underwent arylative Meyer-Schuster rearrangement/Friedel-Crafts alkylation to produce 2,3-dihydroindenones.

© 2017 Elsevier Ltd. All rights reserved.

4-Quinolones are known to have various bioactivities including antiviral activities,¹ antitumor activities² and HIV-1 integrase inhibitory activities.³ The fluoroquinolones Norfloxacin and Levofloxacin are used clinically as antibacterial drugs.⁴ Attractive pharmacological properties of 2,3-dihydro-4-quinolones have recently been reported (Fig. 1).⁵ As part of our continued interest in the syntheses of biologically interesting heterocyclic compounds, we have reported one-pot syntheses of 4-quinolones from 2-alkynylbenzamides⁶ and from propargyl alcohol derivatives.⁷ Recently, we have also been interested in hypervalent iodine reagents and have reported tandem arylation with diaryliodonium salts/cyclization reaction of 2-alkynylphenyl derivatives.⁸ Here we report the novel selective syntheses of 2,3-dihydro-4-quinolones (2 and 4) and 2,3-dihydroindenones (5) from 2-propargylphenylcarbamates 1 using diphenyliodonium salts under different conditions (Scheme 1).

First, we tried reaction of propargyl alcohol derivatives **1a** with a catalytic amount of Ph₂IOTf (*Route A*). After several trials and errors, we found that the reaction of compound **1a** with 0.1 mol equivalent of Ph₂IOTf in 1,2-dichloroethane (DCE) at 80 °C for 24 h gave the cyclization product 2,3-dihydro-4-quinolone **2a** in 73% yield. Probably, trifluoromethanesulfonic acid was produced from Ph₂IOTf during the reaction and it might have sufficient acidity

* Corresponding author. *E-mail address:* ryanada@ps.hirokoku-u.ac.jp (R. Yanada). for tandem Meyer-Schuster rearrangement/ nucleophilic addition of carbamate nitrogen to the resulting vinyl ketone. Substrate **1b** also gave the expected cyclized product **2b** in 75% yield under the same reaction conditions.

Copper-catalyzed arylative Meyer-Schuster rearrangement of propargyl alcohols has already been reported by M.J. Gaunt et al.⁹ We also focused on arylative Meyer-Schuster rearrangement of 2-propargylphenyl carbamate **1** with Ph₂IOTf (*Route B*). The best result was obtained when Ph₂IOTf (1.2 equiv) was used in combination with 2,6-di-*tert*-butylpyridine (DTBP) (1.2 equiv) and CuCl (0.1 equiv) in DCE at 80 °C (Table 1, entry 1). The yield of **3a** was decreased when CuCl was replaced with CuBr or CuI (entries 2 and 3). The yield of **3a** was not improved by increasing the amounts of Ph₂IOTf and DTBP or by lowering the reaction temperature (entries 4 and 5). Diphenyliodonium salt with ⁻OTf showed

CO₂H

activities^{5d}

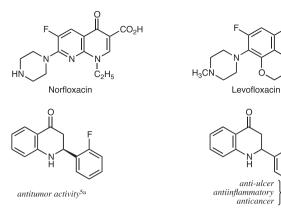
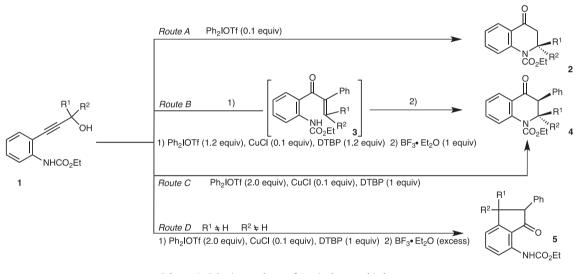
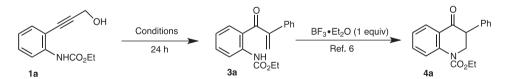



Fig. 1. Bioactive 4-quinolones.

much better activity than that of the other anions $^-BF_4$ and $^-PF_6$ (entries 1, 6 and 7). The yield was not improved by switching to another solvent such as AcOEt or dioxane (entries 8 and 9). In the absence of DTBP or a copper catalyst, the yields of **3a** were low (entries 10 and 11). These blank tests indicate that DTBP and a copper catalyst are essential for the arylative Meyer-Schuster rearrangement. We previously reported intramolecular aminocyclization of carbamate nitrogen to the α,β -unsaturated ketones by $BF_3\cdot Et_2O.^6$ We then tried reaction of compound **3a** with 1 equiv of $BF_3\cdot Et_2O$ in DCE at 80 °C for 22 h. As expected, 3-phenyl-3,4-dihydroquinolone **4a** was obtained in 83% yield.


In our continuing efforts toward tandem arylative Meyer-Schuster rearrangement/nucleophilic addition of carbamate nitrogen to the resulting vinyl ketone, we found a method for one-step synthesis of compound **4** (*Route C*). With only the use of Ph₂IOTf (2 equiv), CuCl (0.1 equiv), and DTBP (1 equiv) in DCE at 80 °C for

Scheme 1. Selective syntheses of 4-quinolones and indenones.

Table 1

Optimization of Cu-catalyzed arylative Meyer-Schuster rearrangement and Michael cyclization.

Entry	Catalyst (0.1 equiv)	Ph ₂ IX (equiv)	Solvent	DTBP (equiv)	Temp (°C)	Yield of 3a (%)
1	CuCl	1.2 (X = OTf)	DCE	1.2	80	78
2	CuBr	1.2 (X = OTf)	DCE	1.2	80	60
3	CuI	1.2 (X = OTf)	DCE	1.2	80	48
4	CuCl	3.6 (X = OTf)	DCE	3.6	80	65
5	CuCl	1.2 (X = OTf)	DCE	1.2	50	63
6	CuCl	1.2 (X = BF_4)	DCE	1.2	80	48
7	CuCl	$1.2 (X = PF_6)$	DCE	1.2	80	31
8	CuCl	1.2 (X = OTf)	AcOEt	1.2	80	25
9	CuCl	1.2 (X = OTf)	Dioxane	1.2	80	25
10	CuCl	1.2 (X = OTf)	DCE	None	80	41 ^a
11	None	1.2 (X = OTf)	DCE	1.2	80	0 ^b

^a Compound **2a** was obtained in 23% yield.

^b Starting material **1a** was recovered in 85% yield.

Download English Version:

https://daneshyari.com/en/article/5264018

Download Persian Version:

https://daneshyari.com/article/5264018

Daneshyari.com