Tetrahedron Letters 58 (2017) 4281-4284

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

tem is inexpensive and more acceptable from industrial point of view.

Cobalt-catalyzed isocyanide insertion cyclization to dihydrobenzoimidazotriazins

Fereshteh Ahmadi, Peiman Mirzaei, Ayoob Bazgir*

Department of Chemistry, Shahid Beheshti University, General Campus, Tehran 1983963113, Iran

ARTICLE INFO

ABSTRACT

Article history: Received 17 July 2017 Revised 25 September 2017 Accepted 29 September 2017 Available online 30 September 2017

Keywords: Isocyanide insertion Cobalt-catalyzed isocyanide insertion Benzoimidazotriazine Triazine

Introduction

Triazines are planar six-membered benzene-like systems with three nitrogens.¹ Among triazine isomers (1,2,3-triazine, 1,2,4-triazine and 1,3,5-triazine), the 1,3,5-triazine is more considered duo to its unique structure and chemical and therapeutical properties.² For example, 1,3,5-triazine-thiazolidine-dione I and triazine dimer II have been reported as DPP-4 inhibitors with antibacterial activity for the treatment of type 2 diabetes³ and antileishmanial agent,⁴ respectively (Fig. 1). Furthermore, 4-(4-aminopyrazolotriazin-8-yl)benzamide III has been nominated as a highly potent and selective inhibitors of tyrosine threonine kinase.⁵ The antiproliferative activity of fluorinated 1,2,4-triazolo[1,5-a][1,3,5]triazines against lung cancer A549 and breast cancer MDA-MB-231 cell lines has been established.⁶ In addition, some 1,3,5-triazines containing varied functionalities are particularly prominent in many histamine H4 receptor ligands,⁷ human DNA topoisomerase IIa inhibitors,⁸ A1 adenosine receptor antagonists,⁹ Escherichia coli dihydrofolate reductase inhibitors¹⁰ and anti cancer agents.¹¹ Benzimidazole triazines IV and V have been described as mammalian target of rapamycin (mTOR) inhibitor¹² and dual PI3K/Mtor inhibitor,¹³ respectively (Fig. 1). 2, 4 or 6-Amino-1,3,5-triazin derivatives such as furazil, tretamine and dioxadet have been known as anticancer drugs.¹⁴ Although there are several conventional methods for the synthesis of 1,3,5-triazine such as heterocyclization of biguanides or their analogues with β -keto esters, aldehydes, ketones and ortoesters,¹⁵ the introduction of new methods is still of much interest.

We have developed an isocvanide insertion reaction for the synthesis of dihydrobenzo[4.5]midazo[1.2-a]

[1,3,5]triazins and imidazol-quinoxaline-5-carboxamides utilizing cobalt catalyst. Cobalt-catalyzed sys-

New and modern synthetic methodologies that afford simple access to a broad range of functionalized heterocycles are critically important in advanced medicinal and combinatorial chemistry as they allow providing compound libraries and expanding the available drug-like compounds. The transition metal-catalyzed C-N bond formation followed by intramolecular cyclization has received broad attention recently compared to traditional methods for the heterocyclic synthesis.^{16–20} The other important and modern strategy for the heterocycles synthesis is isocyanide insertion cyclization.²¹ Isocyanide insertion cyclization gives an atom economical, simple and direct synthetic strategy to complex and structurally diverse molecules using simple substrate.²² The isocyanide insertion cyclization reaction is the metal-catalyzed direct insertion of isocyanide into a heteroatom/carbon-hydrogen or carbon-hologen bond to give an imidoylative intermediate which subsequently undergoes an intramolecular nucleophilic reaction to give a heterocycle.^{21–23} Among previous reports, palladium catalyzed isocyanide insertion cyclization with C-X (X = H, Br or I) bond are very common^{21b-h} and low cost metal catalyzed direct isocyanide insertion reaction into the active N–H bonds are rare. $^{21i-\bar{k}}$ Therefore, the expansion of more inexpensive catalyst systems for isocyanide insertions cyclization is more desirable. Ji and coworkers reported cobalt catalyst isocyanide insertion reactions to amine based bisnucleophiles for the synthesis of 2-aminobenzimidazoles, 2-aminobenzothiazoles, and 2-aminobenzoxazoles.^{21 J} The cobalt-catalyzed isocyanide insertion reaction to form amino methylidyneaminiums and guanidines was developed by this

© 2017 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. *E-mail address:* a_bazgir@sbu.ac.ir (A. Bazgir).

Fig. 1. Some of potent pharmacological agents with 1,3,5-triazine nuclei.

group.^{24,25} Very recently, we reported cobalt-catalyzed isocyanide insertion cyclization for the synthesis of benzoimidazoquinazolines.²⁶ Herein, we wish to report a new approach for the synthesis of dihydrobenzoimidazotriazins by Co-catalyzed isocyanide insertion cyclization.

Result and discussion

The starting point of our study was the reaction of benzo[d]imidazol-guanidine^{15b} **1a** and *t*-buthyl isocyanide **2a** as a model reaction in the presence of Pd(OAc)₂ and potassium carbonate as base in DMF at 80 °C (Table 1, entry 1). The reaction had some side products and the desired product **3a** was separated in 22% isolated yield after 24 h. When the model reaction was performed in the presence of K₂S₂O₈ as oxidant (entry 2), a satisfactory improvement in the isolated yield was observed. We also checked the another oxidant like Ag₂O and Ag₂CO₃ (entries 3,4), but unfortunately no

Table 1

Optimization of the reaction conditions.^a

Entry	Solvent	Oxidant	Catalyst	Yield (%) ^b
1	DMF	-	$Pd(OAc)_2$	22
2	DMF	$K_2S_2O_8$	Pd(OAc) ₂	50
3 ^c	DMF	Ag ₂ O	Pd(OAc) ₂	37
4 ^c	DMF	Ag_2CO_3	$Pd(OAc)_2$	46
5	DMF	$K_2S_2O_8$	Co(OAc) ₂ ·4H ₂ O	63
6	DMF	$K_2S_2O_8$	NiCl ₂	37
7	H ₂ O	$K_2S_2O_8$	Co(OAc) ₂ ·4H ₂ O	Trace
8	PhCH ₃	$K_2S_2O_8$	Co(OAc) ₂ ·4H ₂ O	56
9	1,4-Dioxane	$K_2S_2O_8$	Co(OAc) ₂ ·4H ₂ O	51
10	CH₃CN	$K_2S_2O_8$	Co(OAc) ₂ ·4H ₂ O	51
11 ^d	DMF	$K_2S_2O_8$	Co(OAc) ₂ ·4H ₂ O	44
12 ^e	DMF	$K_2S_2O_8$	$Co(OAc)_2 \cdot 4H_2O$	64
13	DMF	-	$Co(OAc)_2 \cdot 4H_2O$	27

^a Benzo[d]imidazol-guanidine 1a (0.5 mmol), t-BuNC (0.75 mmol), K₂CO₃ (0.5 mmol), oxidant (0.5 mmol), catalyst (10 mol%), solvent (2.0 mL), 80 °C. ^b Isolated yields.

^c Reaction time = 48 h.

^d Reaction temperature = 60 °C.

^e Reaction temperature = 100 °C.

improvement was detected even after 48 h. Therefore, we decided to change the catalyst. When we changed the catalyst to $Co(OAc)_2$ --4H₂O, surprisingly high conversion was observed after 24 h in DMF and in the presence of the $K_2S_2O_8$ (entry 5). Then, we checked the efficiency of NiCl₂ as catalyst in the reaction and conversion was less than Co(OAc)₂·4H₂O after 24 h (entry 6). So, Co(OAc)₂- $-4H_2O$ was chosen as the best catalyst for the reaction. After screening the solvents such as PhMe, 1,4-dioxane, MeCN and H₂O (entries 7-10), DMF was found to be the most suitable reaction media, providing benzo[4,5]imidazo-triazine (3a) in 63% isolated yield in the presence of Co(OAc)₂·4H₂O (10 mol%), K₂CO₃(1eq) and $K_2S_2O_8$ (1eq) at 80 °C. To optimize the reaction temperature, we also performed several experiments at 60, 80 and 100 °C (entries 5, 11 and 12). As can be seen from Table 1, the most suitable reaction temperature was 80 °C (entry 5). The K₂S₂O₈ played a crucial role in this reaction and when this reaction was carried out without $K_2S_2O_8$, the yield of the product was 27% (entry 13).

Then, the scope of the isocyanide insertion reaction cyclization was examined using several substituted benzoimidazol-guanidines containing both electron-withdrawing and electron-donating group **1** with various isocyanides **2** under the optimized reaction conditions and the expected products **3** were obtained in 48–75% isolated yields²⁷ (Scheme 1). It should be mentioned that high conversion (>80%) were obtained by using optimal reaction condition and to gain more isolated yields we used different purification methods. The column chromatography was the best purification method and the pure products were isolated in 50–75% yield. When unsymmetrically substituted benzoimidazol-guanidine with methyl-substituted group (**1b**) was treated with isocyanides, an inseparable regioisomeric mixture was obtained in moderate isolated yields (Scheme 1, entries **3b** and **3e**).

The structures of products **3** were fully characterized by IR, ¹H NMR, ¹³C NMR spectroscopy, mass spectrometry, and elemental analysis. The mass spectrum of **3a** showed the molecular-ion peak at m/z 256. The IR spectrum of **3a** exhibited absorption bands due

Download English Version:

https://daneshyari.com/en/article/5264019

Download Persian Version:

https://daneshyari.com/article/5264019

Daneshyari.com