ARTICLE IN PRESS

Tetrahedron Letters xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Digest Paper

Catalytic C—C bond forming transformations via direct β -C—H functionalization of carbonyl compounds

Zhongxing Huang, Guangbin Dong*

Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States

ARTICLE INFO

Article history: Received 2 July 2014 Revised 1 September 2014 Accepted 1 September 2014 Available online xxxx

Keywords: C—H functionalization Carbonyl compounds β-C—H bonds C—C bond formation

ABSTRACT

Strategies have emerged over the past decade to enable the direct functionalization of the remote and inert β -C—H bonds of carbonyl compounds. Based on these strategies, a wide collection of novel β -C—C bond formation transformations have been developed, including arylation, alkylation, alkenylation, and carbonylation. This review summarizes these recent methods for C—C bond formations via direct β -C—H functionalization of carbonyl compounds. The scope and limitation of each strategy are also discussed.

© 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Contents

Introduction	. 00
Cyclometallation via directing groups	. 00
General mechanisms	. 00
Type A: Bidentate directing group	. 00
Arylation	
Alkylation	. 00
Alkynylation	
Carbonylation	. 00
Application in total synthesis	. 00
Type B: Weaker coordinating directing group.	
Migratory coupling	
Photoredox catalysis	. 00
Palladium tandem catalysis	
Organocatalysis	. 00
Conclusion	
Acknowledgement	. 00
References and notes	ΛΛ

Introduction

Functionalization of carbonyl compounds represents a cornerstone of organic chemistry. The inherent electrophilicity of the carbonyl group and acidity of the α -C—H bond provide convenient handles for the installation of various functional groups at the *ipso* and α -position of carbonyl compounds, respectively. However, the

 β -C—H bond is usually considered inert and thus less facile to functionalize directly. On the other hand, such β -substituted motifs are frequently found in a wide array of bioactive compounds, including pesticides, anti-oxidants, and drug candidates. Traditionally, functionalization of the β -position is often accomplished with conjugate addition of nucleophiles to the corresponding α,β -unsaturated carbonyl compounds (Scheme 1). However, α,β -unsaturated carbonyl compounds are often prepared from their saturated derivatives using stoichiometric oxidants. Thus, direct

http://dx.doi.org/10.1016/j.tetlet.2014.09.005

 $0040\text{-}4039/\text{\circledcirc}\ 2014$ Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

st Corresponding author.

Scheme 1. β-C—H functionalization of carbonyl compounds.

methods to convert the β -C—H bond to the desired functional group would considerably increase the efficiency of preparing β -substituted carbonyl compounds. During the last decade, significant efforts have been devoted toward direct β -C—H functionalization of carbonyl compounds. In this digest, we primarily focus on discussing the transformations that directly replace a β -C—H bond of carbonyl compounds with a C—C bond. While not intended to comprehensively cover all literature references, it rather offers a perspective on strategy design and discovery through selected examples to highlight representative reaction types.

Cyclometallation via directing groups

Directing-group strategies have been widely applied in transition-metal-mediated site-selective C—H activation, through which a significant number of catalytic transformations have been developed. Nevertheless, compared with sp^2 C—H bonds, the sp^3 -hybridized β -C—H bond of carbonyl compounds is less prone to be cleaved by transition metals from both kinetic and thermodynamic prospectives, 4 which presents a significant challenge for design and development of new directing groups.

General mechanisms

Regarding the mechanism of these cyclometallation-type transformations, two general classes can be imagined based on the coupling partners employed. When an electrophile, such as an aryl halide, is involved, a typical reaction pathway proceeds through a selective metallation at the β -position assisted by the directing group, followed by oxidative addition of the electrophile to the metal giving intermediate 1 (Scheme 2, pathway A). It is also possible that the C—H metallation and oxidative addition occur in a reverse order (pathway B). Under either pathway, reductive elimination of intermediate 1 delivers the β -functionalization product and restores the active catalyst.

Scheme 2. Cyclometallation-type β -C—H functionalization via oxidative addition of electrophiles.

Scheme 3. Cyclometallation-type β -C—H functionalization via transmetallation of organometallic reagents.

When an organometallic reagent (i.e., arylboronic acids) is used, the coupling proceeds through a different mechanism (Scheme 3). After the C—H metallation step, transmetallation between the organometallic reagent and intermediate 2 installs the functional group on the metal center while the oxidation state of the metal remains unchanged. Subsequent reductive elimination affords the product, and oxidation of the reduced catalyst (4) by an external oxidant regenerates the catalyst.

According to the types of the directing groups employed, the β -functionalization through cyclometallation can be classified into two categories: type A is with strong bidentate directing groups; type B is with weaker coordinating directing groups.

Type A: Bidentate directing group

Arylation

In 2005, Daugulis and co-workers disclosed a palladium-catalyzed β -arylation of amides using 8-aminoquinoline (AQ) as a directing group (Scheme 4). In their proposed intermediate, the 8-aminoquinoline auxiliary provides an L-type (quinoline) and an X-type (amide) ligand to chelate with palladium in a bidentate fashion. The 5–5 fused palladacycle **5** was formed after the selective palladation of the β -C—H bond. Methyl, methylene, and benzylic C—H bonds β to the carbonyl can be arylated selectively with aryl iodides as the aryl source under neat conditions. Silver salts are likely used as an iodide scavenger. When activating a methyl group, the arylation occurred twice to give diarylation products.

Soon after the seminal work by Daugulis, Corey and co-workers successfully applied this strategy to prepare non-natural amino acids (Scheme 5).⁶ With the 8-aminoquinoline moiety as the directing group, N-phthaloyl valine and phenylalanine derivatives underwent diastereoselective β -arylation through coupling with a range of aryl iodides. The diastereoselectivity could be explained by the formation of a less sterically hindered *trans*-palladacycle (7). When alanine derivative **6** was submitted to the reaction conditions, a diarylation product was selectively formed, which is consistent with the observation by Daugulis.⁵

Daugulis and co-workers subsequently discovered that the use of silver salts and neat conditions can be avoided by using a combination of main-group inorganic salts and alcoholic solvents (Scheme 6). In addition, while the diarylation product dominates when 8-aminoquinoline was used as the directing group, 2-methylthio aniline was found to afford selective monoarylation of primary β -C—H bonds. This new directing group also works for

Download English Version:

https://daneshyari.com/en/article/5264035

Download Persian Version:

https://daneshyari.com/article/5264035

Daneshyari.com