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A variety of 1,3-oxathiolanes can be easily converted to the corresponding ketones in good yields with
LTMP in THF. This deprotection methodology shows satisfactory chemoselectivity when other protecting
groups, such as dimethylketal, 1,3-dioxolane, 1,3-dithiane, and other acid-sensitive groups, are present
within the same substrates.

© 2013 Elsevier Ltd. All rights reserved.

Protection and deprotection play important roles and are usu-
ally unavoidable in the synthesis of complex molecules. Among
the various protecting groups for carbonyl, 1,3-oxathiolane is very
useful because of its stability under mild acidic condition, in which
the O,0-acetals are often not tolerant. Accordingly, many methods
have been exploited for the deprotection of 1,3-oxathiolanes. These
usual reagents include Lewis acids,! oxidants,? and those resulting
in sulfonium intermediates,> such as NBS,* I,~AgNO,,3%3¢ and
Bi(NO5);.3" Moreover, other special reagents*'° proved effective
for this deprotection as well, including Raney nickel,* Chloran-
mine-T,”> BSP/Tf,0,° HgO,” and benzyne.® However, to the best of
our knowledge, deprotection of 1,3-oxathiolane solely with base
has never been explored.

We have previously reported an interesting base-promoted
deprotection of 1,3-dioxolanes (Scheme 1A),!! adventitiously dis-
covered during the total synthesis of lindenane-type sesquiterpe-
noids.’? In view of reaction mechanism, we anticipated that
treating 1,3-oxathiolanes with base should potentially provide
the corresponding ketones via either path a or path b
(Scheme 1B). Herein we present our results on this deprotection
with lithium 2,2,6,6-tetramethylpiperidide (LTMP).

Initially, 1,3-oxathiolane of a-tetralone (1a) was selected as the
test substrate and treated with various bases in THF (Table 1, en-
tries 1-8). Although potassium tert-butoxide and potassium and
lithium bis(trimethylsilyl)amides proved ineffective to deprotect
1a even at 0 °C (entries 1-3), lithium diisopropylamide (LDA) led
to a satisfactory 61% yield as a stronger base (entry 4). To our de-
light, LTMP behaved as the optimal base, affording 79% yield at
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Scheme 1.

—78 °C (entry 5). However, inferior yields were obtained when
we attempted n-butyl lithium, s-butyl lithium, and t-butyl lithium
(entries 6-8). To probe the possibility of further optimization, we
studied deprotection in different solvents. Interestingly, in the
ethereal solvents other than THF, the reaction proceeded sluggish
even at 0 °C, as was the situation in toluene (entries 9-12). Finally,
we achieved 84% yields with 5.0 equiv of LTMP in THF, while a low-
er yield was obtained with a less amount of base even at higher
reaction temperatures (entries 13-14).

Based on the above optimization, we investigated the sub-
strate scope for this reaction with 5.0 equiv of LTMP in THF.
The results are summarized in Table 2. First, aromatic substrates
with a different para-substituent were screened, showing that
both electron-donating and electron-withdrawing groups are tol-
erable (entries 2-4). Similarly, the ortho-substituted bromide also


http://dx.doi.org/10.1016/j.tetlet.2013.02.053
mailto:chembliu@scu.edu.cn
http://dx.doi.org/10.1016/j.tetlet.2013.02.053
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet

2218

Table 2

Table 1
Optimization of the reaction condition®
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o. S o é HO_ "Bu
Base (4.0 equiv. i
Solvent E
1a 2a i 3
Entry Solvent Base Temperature (°C) Yield of 2a® (%)
1 THF t-BuOK ~78to 0 NR¢
2 THF KHMDS -78t0 0 NR
3 THF LHMDS ~-78t0 0 NR
4 THF LDA -78 61
5 THF LTMP -78 79
6 THF n-BuLi -78 144
7 THF s-BuLi -78 59
8 THF t-BuLi -78 25
9 DME LTMP -78to 0 15
10 t-BuOMe LTMP ~-78to 0 29
11 Et,0 LTMP ~78to 0 25
12 Toluene LTMP —-78to 0 14
13 THF LTMP® 78 84
14 THF LTMPf —78 to 1t 69

¢ Unless otherwise specified, the reaction was carried out with 1a (0.5 mmol) and the corresponding base

(2.0 mmol) in solvent (4 mL) under argon atmosphere.

b
c
d
e

Isolated yields.
NR = no reaction.

By-product 3 formed in 58% yield.
2.5 mmol of LTMP was used.
1.5 mmol of LTMP was used.
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