ARTICLE IN PRESS

Tetrahedron Letters xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Displacement-based, chromogenic calix[4]pyrrole-indicator complex for selective sensing of pyrophosphate anion

Sandeep Kaur^a, Hoon Hwang^a, Jeong Tae Lee^{b,*}, Chang-Hee Lee^{a,*}

^a Department of Chemistry, Kangwon National University, Chun Cheon 200-701, Republic of Korea
^b Department of Chemistry, Hallym University, Chun Cheon 200-700, Republic of Korea

ARTICLE INFO

Article history: Received 2 April 2013 Revised 23 April 2013 Accepted 30 April 2013 Available online xxxx

Keywords: Calix[4]pyrrole Indicator displacement assay Pyrophosphate Azophenolate Anion recognition

ABSTRACT

A supramolecular complex composed of bis-pyridinium picket calix[4]pyrrole and azophenol indicator is a highly visible colorimetric displacement assay and sensor. The system shows significant selectivity and a higher affinity for pyrophosphate anions over other competing anions.

© 2013 Elsevier Ltd. All rights reserved.

The design and synthesis of sensitive chemosensors for selective detection of anions¹ have received considerable attention in the chemical, biological, and environmental sciences.² The key components in an effective chemosensor are the recognition domain (binding site) and the signaling unit (indicator).³ In most molecularly constructed sensors, the receptor site and signaling unit are covalently linked to facilitate observable changes associated with the binding interaction. Anslyn and co-workers⁴ have developed the indicator-displacement assay (IDA), where sensing of a target analyte is achieved by a binding-induced displacement within a supramolecular receptor-indicator complex. This approach relies upon the competition between the analyte and the indicator for a binding cavity on the receptor; the analyte must have the higher binding affinity. It has been used for the selective sensing of anions such as phosphate,⁵ pyrophosphate,⁶ nitrate,⁷ cyanide,⁸ and citrate.⁹

The detection of pyrophosphate anion $(HP_2O_7^{3-})$ is particularly important for the analysis of bioenergetic and metabolic processes.¹⁰ It plays a critical role in energy storage¹¹ and signal transductions, as well as being a structural component of teeth and bones. Also, it is a product of ATP hydrolysis and participates in many enzymatic reactions¹² such as the adenylate cyclase-catalyzed synthesis of cyclic AMP, aminoacyl tRNA synthetase-catalyzed attachment of amino acids to tRNA in protein synthesis, and DNA sequencing/replication¹³ catalyzed by DNA polymerase. High levels of $HP_2O_7^{3-}$ are known to cause several diseases.¹⁴

Zinc-dipicolylamine (Zn(II)-DPA) and Cu(II)-DPA complexes have been employed as IDAs for the detection of pyrophosphate anions.^{15,16} The metal centers become coordination spheres to accommodate the oxoanions. Other receptors for pyrophosphate anion include macrocyclic pyrrole, imidazolium-based macrocycles, and dipyrrolyquinoxalines.¹⁷ We reported a bis-pyridinium calix[4]pyrrole derivative for 'turn on' fluorescence detection of pyrophosphate in an aqueous organic solvent¹⁸ that utilizes a hydrogen bonding interaction and electrostatic interactions combined with a fluorescent dye-displacement assay. We have also developed a supramolecular receptor-indicator complex¹⁹ composed of bis-pyridinium calix[4]pyrrole and an azo dye for selective recognition of $HP_2O_7^{3-}$ over other competing anions, including F⁻ and AcO⁻. The recognition of F⁻ in organic media was achieved with a colorimetric IDA using an octamethylcalix[4]pyrrole-(p-nitrophenolate) complex by Sessler and coworkers²⁰ and a merocyanine dye by Machado and co-workers.²¹

Here, we report on an IDA-based colorimetric detection of $HP_2O_7^{3-}$ anion using dicationic calix[4]pyrrole combined with an azo dye indicator. The pyrrole was designed to allow multiple interactions with the guest anion (hydrogen bonding, anion- π interactions, and coulombic interactions). The azo dye, initially bound to the receptor, is replaced by the target analyte, resulting in colorimetric detection (Scheme 1). The *cis*-5,15-(4-pyridyl)-5,10,10,15,20,20-hexamethylcalix[4]pyrrole was prepared in moderate yield by acid-catalyzed condensation of 5-(4-pyridyl)dipyrromethane with acetone. The hexafluorophosphate salt of bis-pyridinium calix[4]pyrrole **1** was obtained via methylation of *cis*-5,15-(4-pyridyl)-5,10,10,15,20,20-hexamethylcalix[4]pyrrole,

^{*} Corresponding authors. Tel.: +82 33 250 8490; fax: +82 33 253 7582 (C.-H.L.). *E-mail address:* chhlee@kangwon.ac.kr (C.-H. Lee).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.04.129

S. Kaur et al./Tetrahedron Letters xxx (2013) xxx-xxx

Scheme 1. Formation of the complex $[1\cdot 2^-]$ and the recognition of HP₂O₇³⁻ via displacement of dye 2^- .

followed by treatment with NH_4PF_6 . Tetrabutylammonium salt of azo-dye 2^- was obtained in good yield by treating 4-(4-nitrophe-nylazo)resorcinol with tetrabutylammonium hydroxide. The structure of all the compounds was confirmed with spectroscopic means (SI).

The anionic form of indicator $\mathbf{2}^-$ (10 µM) has a red/pink color with twin absorption bands at 538 nm ($\varepsilon_{max} = 42,800 \text{ l-mol}^{-1}\text{cm}^{-1}$) and 447 nm ($\varepsilon_{max} = 49,500 \text{ l-mol}^{-1}\text{cm}^{-1}$) in acetonitrile. Incremental addition of receptor **1** (0–30 µM) to the solution of $\mathbf{2}^-$ (10 µM) results in decreased absorbance at 538 nm and increased absorbance at 447 nm, with a 10 nm bathochromic shift, as shown in Figure 1.

The binding of indicator 2^- to receptor **1** is accompanied by a distinctive color change from pink to yellow. Saturation occurs when 30 µM of receptor is added (Fig. 2). The isosbestic point at 500 nm indicates an equilibrium complexation of receptor **1** and indicator 2^- . A Job plot also supports the 1:1 binding stoichiometry between receptor **1** and indicator 2^{-} .²² Analysis of the titration data in Figure 1 with a non-linear least square fit (HypSpec²³) yields an association constant $K_a = (1.80 \pm 0.04) \times 10^6 \text{ M}^{-1}$. These observations clearly indicate that formation of the supramolecular receptor–indicator complex [**1**·2⁻] is favorable and that the hydrogen-bonding interactions between the anionic indicator 2^- and the pyrrole N–H bonds are strong. The binding behavior of the anionic indicator **2**⁻ and receptor **1** (2.28 mM) is titrated with anionic

Figure 1. Changes in the absorption spectrum of **1.2**⁻ (10 μ M) upon titration with pyrophosphate ion (0–30 μ M) in CH₃CN. The inset displays the color of the [**1.2**⁻] and the complex [1H₂P₂O₇^{3–}].

Figure 2. Job plot for the binding between **1** and 2^- in CH₃CN.

indicator $\mathbf{2}^-$ in CD₃CN, the signals corresponding to the *ortho*-protons from the anionic center are shifted up-field and the signals from the rest of the aromatic protons become broad relative to the spectrum of pure $\mathbf{2}^-$ in CD₃CN.

In addition, the signal corresponding to NH protons of receptor **1** shows a considerable down-field shift from δ 7.90 to δ 10.85 ppm (Fig. 3 (iii)), indicating hydrogen bonding between phenolate anion and pyrrole N–H bonds, as well as possible π – π interactions.²⁴ Only 1.0 equiv of **2**[–] is required for complete binding.

The anion recognition properties of the complex $[1\cdot2^{-}]$ were investigated by UV–vis absorption spectroscopy in CH₃CN. When it is titrated with the anions F⁻, CN⁻, AcO⁻, and Cl⁻ (as their tetrabutyl ammonium salt, 0–17.5 µM), only small increases in absorbance at 538 nm are observed (Fig. 4). However, a significant change in absorbance, as well as in the visual color, is observed upon titration with pyrophosphate anion (HP₂O₇⁻). Thus the affinity of pyrophosphate anion toward receptor **1** is strong and is capable of complete replacement of the indicator to form the new complex $[1\cdotHP_2O_7^{3^-}]$. In contrast, $H_2PO_4^{-}$, Br⁻, and I⁻ anions do not produce appreciable changes in the absorption spectra.

However, the initial $[1\cdot2^{-}]$ absorption spectrum is shifted to a broad absorption band at 400–430 nm upon titration with HSO₄⁻ (17.5 µM). This spectral change is associated with the ionization of monobasic HSO₄⁻ to dibasic SO₄⁻ by indicator anion 2⁻, which is sufficiently basic to deprotonate HSO₄⁻. Formation of the resulting azophenol derivative **2** can be confirmed by comparing the absorption spectra with **2**⁻. The detection limit²⁵ for HP₂O₇³⁻ is

Please cite this article in press as: Kaur, S.; et al. Tetrahedron Lett. (2013), http://dx.doi.org/10.1016/j.tetlet.2013.04.129

Download English Version:

https://daneshyari.com/en/article/5264155

Download Persian Version:

https://daneshyari.com/article/5264155

Daneshyari.com