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In recent years graph cuts have become a popular tool for performing inference in Markov and condi-
tional random fields. In this context the question arises as to whether it might be possible to compute
a measure of uncertainty associated with the graph cut solutions. In this paper we answer this particular
question by showing how the min-marginals associated with the label assignments of a random field can
be efficiently computed using a new algorithm based on dynamic graph cuts. The min-marginal energies
obtained by our proposed algorithm are exact, as opposed to the ones obtained from other inference algo-
rithms like loopy belief propagation and generalized belief propagation. The paper also shows how min-
marginals can be used for parameter learning in conditional random fields.
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1. Introduction

Researchers in computer vision have extensively used graph
cuts to compute the maximum a posteriori (MAP) solutions for var-
ious discrete pixel labelling problems such as image restoration,
segmentation and stereo. One of the primary reasons for the grow-
ing popularity of graph cuts is their ability to find the globally opti-
mal solutions for an important class of energy functions in
polynomial time [20]. Even for problems where graph cuts do
not guarantee optimal solutions they can be used to find solutions
which are strong local minima of the energy [5]. These solutions
for certain problems have been shown to be better than the ones
obtained by other methods [4,24].

Graph cuts however do suffer from a big disadvantage. Unlike
other inference algorithms, they do not provide any uncertainty
measure associated with the solution they produce. This is a seri-
ous drawback since researchers do not obtain any information
regarding the probability of a particular latent variable assignment
in a graph cut solution. Inference algorithms such as loopy belief
propagation (LBP), generalized belief propagation (GBP) and the
recently introduced tree re-weighted message passing (TRW)
[19,27] output approximate marginal or min-marginal energies
associated with each latent variable. Note that for tree-structured
graphs, the simple max-product belief propagation algorithm gives
the exact max-marginal probabilities/min-marginal energies' for
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! We will explain the relation between max-marginal probabilities and min-
marginal energies later in Section 2. To make our notation consistent with recent
work in graph cuts, we formulate the problem in terms of min-marginal energies
(subsequently referred to as simply min-marginals).
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different label assignments in O(nl*) time where n is the number
of latent variables, and ! is the number of labels a latent variable
can take.

This paper addresses the problem of efficiently computing the
min-marginals associated with the label assignments of any latent
variable in a Markov random field (MRF). Our method can work on
all MRFs or CRFs that can be solved using graph cuts. First, we show
how in the case of binary variables, the min-marginals associated
with the labellings of a latent variable are related to the flow-poten-
tials (defined in Section 3) of the node representing that latent var-
iable in the graph constructed in the energy minimization
procedure. The exact min-marginal energies can be found by com-
puting these flow-potentials. We then show how flow-potential
computation is equivalent to the problem of minimizing a projec-
tion of the original energy function.?

Minimizing a projection of an energy function is a computation-
ally expensive operation and requires a graph cut to be computed.
In order to obtain the min-marginals corresponding to all label
assignments of all random variables, we need to solve O(nl) num-
ber of st-mincut problems. In this paper, we present an algorithm
based on dynamic graph cuts [16] which solves these O(nl) prob-
lems extremely quickly. Our experiments show that the running
time of this algorithm i.e. the time taken for it to compute the
min-marginals corresponding to all latent variable label assign-
ments is of the same order of magnitude as the time taken to com-
pute a single graph cut. The first version of this paper appeared as
[17]. This extended version shows how the min-marginals

2 A projection of the function f(x;,X;, ..., X,) can be obtained by fixing the values of
some of the variables in the function f(.). For instance f'(x,...,Xn) = f(0,X2,...,Xy) is
a projection of the function f(.).
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obtained using our method can be used for parameter learning in
CRFs.

1.1. Overview of dynamic graph cuts

Dynamic computation is a paradigm that prescribes solving a
problem by dynamically updating the solution of the previous
problem instance. Its hope is to be more efficient than a com-
putation of the solution from scratch after every change in the
problem. A considerable speedup in computation time can be
achieved using this procedure, especially, when the problem is
large and changes are few. Dynamic algorithms are not new
to computer vision. They have been extensively used in compu-
tational geometry for problems such as range searching, inter-
sections, point location, convex hull, proximity and many
others [6].

Boykov and Jolly [3] were the first to use a partially dynamic st-
mincut algorithm in a vision application. They proposed a tech-
nique with which they could update capacities of certain graph
edges, and recompute the st-mincut dynamically. They used this
method for performing interactive image segmentation where
the user could improve segmentation results by giving additional
segmentation cues (seeds) in an online fashion. However, their
scheme was restrictive and did not allow for general changes in
the graph. In one of our earlier papers, we proposed a new algo-
rithm overcoming this restriction [16], which is faster and allows
for arbitrary changes to be made in the graph. The running time
of this new algorithm has been empirically shown to increase lin-
early with the number of edge weights changed in the graph. In
this paper, we will use this algorithm to compute the exact min-
marginals efficiently.

1.2. Our contributions
To summarize, the key contributions of this paper include:

e The discovery of a novel relationship between min-marginal
energies and node flow-potentials in the residual graph
obtained after the graph cut computation.

o An efficient algorithm based on dynamic graph cuts to compute
min-marginals by minimizing energy function projections.

e The use of min-marginals for learning parameters of CRFs used
for modelling labelling problems.

1.3. Organization of the paper

The paper starts by describing the basics of random fields and
graph cuts and proceeds to discuss the relationship between
min-marginals and node-flow-potentials. We then show how
max-marginal probabilities can be found by minimizing projec-
tions of the energy function defining a MRF or CRF, and how dy-
namic graph cuts can be used to efficiently compute the
minimum values of these projections. Our algorithm can handle
all energy functions that can be solved using graph cuts
[9,11,14,20].

We discuss random fields and min-marginal energies in Sec-
tion 2. In Section 3, we formulate the st-mincut problem, define
terms that would be used in the paper, and describe how cer-
tain energy functions can be minimized using graph cuts. In
Section 4, we show how min-marginals can be found by mini-
mizing projections of the original energy function. In the same
section we describe a novel algorithm based on dynamic graph
cuts to efficiently compute the minima of these energy projec-
tions. In Section 5, we discuss some applications of our
algorithm.

2. Notation and preliminaries

We will now describe the notation used in the paper. We will
formulate our problem in terms of a pairwise MRF.> Note that the
pairwise assumption does not affect the generality of our formula-
tion since any MRF involving higher order interaction terms can be
converted to a pairwise MRF by addition of auxiliary variables in
the MRF [28].

Consider a discrete random field X defined over a lattice
v ={1,2,...,n} with a neighbourhood system .4". Each random
variable X; € X is associated with a lattice point i € ¥~ and takes a
value from the label set Z',. The neighbourhood system ./ of the
random field is defined by the sets ./7,Vi € ¥, where ./"; denotes
the set of all neighbours of the variable X;. Any possible assignment
of labels to the random variables is called a labelling or configura-
tion. It is denoted by the vector X, and takes values from the set
Z defined as &' =21 x X3 x --- x 4. Unless noted otherwise,
we use symbols u and v to denote values in ¥, and i and j to denote
particular values in 2, and %', respectively.

A random field is said to be a Markov random field (MRF) with
respect to a neighbourhood system .+* = {4",|v € ¥’} if and only if
it satisfies the positivity property: Pr(x) > Ovx € 2, and the Mar-
kovian property:

Prxy[{x, : u € v — {v}}) =Pr(x,[{x, :u e #}), Wwev. (1)

Here we refer to Pr(X = x) as Pr(x) and Pr(X; = x;) as Pr(x;). A condi-
tional random field (CRF) may be viewed as an MRF globally condi-
tioned on the data.

The MAP-MRF estimation problem aims to find the configura-
tion x which has the highest probability. It can be formulated as
an energy minimization problem where the energy corresponding
to a MRF configuration x is defined as

(x]0) = —log Pr(x|D) — const. (2)

Here 0 is the energy parameter vector defining the MRF [19]. The
energy functions characterizing MRFs used in computer vision can
usually be written as a sum of unary and pairwise terms:

E(x|0) =" (¢>(xv) +> gb(xu,xv)) + const. (3)

vey” ueNy
In the paper, (0) is used to denote the value of the energy of the
MAP configuration of the MRF and is defined as

¥(0) = minE(x|0). (4)

In what follows, the term optimal solution will be used to refer to the
MAP solution of the random field.

2.1. Min-marginal energies

A min-marginal is a function that provides information about
the minimum values of the energy E under different constraints.
Following the notation of [19], we define the min-marginal ener-
gies l//v;ja lr//uv:ij as

¥y(0) = xgrpjg:jE(X\O), (5)
Yugi(0) = min  E(X]0). (6)

XEX Xy=1Xy=]
In words, given an energy function E whose value depends on the
variables (X1,X;, ..., Xn), ¥,,;(0) represents the minimum energy va-
lue obtained if we fix the value of variable X, to j (x, =j) and min-
imize over all remaining variables. Similarly, v,,.;(0) represents the
value of the minimum energy obtained by assigning labels i and j to

3 Pairwise MRFs have cliques of size at most two.
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