Tetrahedron Letters 54 (2013) 2462-2465

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Enantioselective additions of (trifluoromethyl)trimethylsilane to α -imino ketones derived from aryl glyoxals

Emilia Obijalska*, Grzegorz Mlostoń, Alice Six[†]

University of Łódź, Department of Organic and Applied Chemistry, Tamka 12 Street, 91-403 Lódź, Poland

ARTICLE INFO

ABSTRACT

Article history: Received 21 December 2012 Revised 12 February 2013 Accepted 27 February 2013 Available online 7 March 2013

Keywords: Asymmetric nucleophilic trifluoromethylation (Trifluoromethyl)trimethylsilane β-Amino-α-(trifluoromethyl) alcohols Cinchonium bromides α-Imino ketones

The synthesis of organofluorine compounds is a challenge in modern organic chemistry. Incorporation of fluorine atoms or perfluoroalkyl groups into the structure of organic molecules results in significant changes in their physical, chemical, and biological properties.¹ Among fluorinated compounds, particular interest is focused on molecules bearing a trifluoromethyl group, which have found wide applications in, for example, the synthesis of materials with specific properties as well as biologically active compounds.¹ They are also used as efficient catalysts for diverse reactions.² (Trifluoromethyl)trimethylsilane (the so called Ruppert-Prakash reagent, RPR) is recognized as a very convenient reagent for the introduction of a CF₃ group into electrophilic substrates.³ Extensive research has been focused on the development of stereocontrolled RPR additions to carbonyl compounds. In a recent paper, we demonstrated that camphorquinone monoimines underwent nucleophilic trifluoromethylation in a chemo- and diastereoselective manner.⁴ Effective protocols for the enantioselective trifluoromethylation of prochiral aldehydes and ketones, using RPR, have been described.⁵ In these procedures, reactions were performed using methods based on phase-transfer catalysis. Typically, reactions were carried out in the presence of two catalysts: an enantiomerically pure quaternary ammonium bromide and an achiral salt being a source of fluoride, for example KF or TMAF. It turned out that the most efficient catalysts were ammonium salts derived from *Cinchona* alkaloids.

© 2013 Elsevier Ltd. All rights reserved.

Chemoselective additions of (trifluoromethyl)trimethylsilane to α -imino ketones derived from aryl

glyoxals in the presence of a catalytic amount of enantiomerically pure ammonium bromides, derived

from *Cinchona* alkaloids and K_2CO_3 led to O-silvlated β -imino alcohols. Subsequent reduction of these

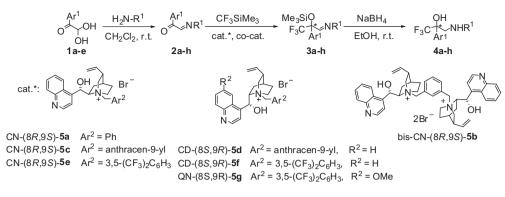
products with NaBH₄ gave β -(*N*-alkyl)amino- α -trifluoromethyl alcohols for which the ee values were

30-71% under optimized conditions. Enantiomeric excesses were determined for the final products on

the basis of ¹H or ¹⁹F NMR spectra registered in the presence of chiral solvating agents.

From another point of view, β-amino alcohols are considered as versatile building blocks and are widely applied in organic synthesis.⁶ Many biologically active substances belong to this class of compounds, or contain in their structure the modified skeleton of a β-amino alcohol.⁶ β-Amino alcohols are also employed as catalysts and chiral auxiliaries in asymmetric synthesis.⁷ Their derivatives, functionalized with a CF₃ group, combine unique physical, chemical, and biological properties. Several methods for the preparation of such compounds in racemic form have already been reported.⁸ Presently, the development of new and general synthetic methods for the preparation of such compounds in enantiomerically pure form, based on the application of inexpensive and easily available starting materials is a challenge in organic chemistry. Stereocontrolled methods for the preparation of the target compounds exploit the phenomenon of asymmetric induction or the use of expensive, enantiomerically pure substrates bearing a CF₃ group.⁸ To the best of our knowledge, there is only one report in which an enantioselective method for the preparation of such compounds is described,⁹ which involves a Henry reaction carried out in the presence of a chiral lanthanide(III) '(S)-binolam' complex.

In a previous report, we showed that chemoselective nucleophilic trifluoromethylation of α -imino ketones derived from aryl glyoxals, with subsequent reduction of the C=N function led to racemic β -amino- α -(trifluoromethyl) alcohols.¹⁰ Substrates bearing an α -methylbenzyl substituent on the N-atom as a chiral auxiliary reacted with RPR with low diastereoselectivity. In the



^{*} Corresponding author. Tel.: +48 42 635 5766; fax: +48 42 665 5162.

E-mail address: emilkaobijalska@gmail.com (E. Obijalska).

 $^{^\}dagger$ Visiting strudent from École Nationale Supérieure d'Ingénieurs de Caen & Centre de Recherche, Caen, France.

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.02.093

Scheme 1. Enantioselective synthesis of β -amino- α -trifluoromethyl alcohols.

Table 1

Substrate	Ar ¹	\mathbb{R}^1	Cat.*	Co-cat.	MOL %	Solvent	T (°C)	Yield (%) of 4 ^a	ee (%)	$[\alpha_D]^b$
2a	Ph	t-Bu	CN-(8 <i>R</i> ,9 <i>S</i>)- 5a	KF	15	CH_2Cl_2	~ 20	50	0	_
2a	Ph	t-Bu	CN-(8R,9S)-5a	KF	15	Toluene	~ 20	88	9	_c
2a	Ph	t-Bu	Bis-CN-(8R,9S)-5b	KF	15	Toluene	~ 20	87	8	_c
2a	Ph	t-Bu	CN-(8R,9S)-5c	KF	15	Toluene	~ 20	82	18	+0.7
2a	Ph	t-Bu	CD-(8S,9R)-5d	KF	15	Toluene	~ 20	86	24	-0.9
2a	Ph	t-Bu	CN-(8R,9S)-5e	KF	15	Toluene	~ 20	79	52	+1.9
2a	Ph	t-Bu	CD-(8S,9R)-5f	KF	15	Toluene	~ 20	79	58	-2.0
2a	Ph	t-Bu	QN-(8S,9R)-5g	KF	15	Toluene	~ 20	71	35	-1.1
2a	Ph	t-Bu	CD-(8S,9R)-5f	KF	10	Toluene	~ 20	59	52	-1.7
2a	Ph	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	~ 20	85	65	-2.7
2a	Ph	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	10	Toluene	~ 20	77	56	-1.9
2a	Ph	t-Bu	CD-(8S,9R)-5f	КОН	15	Toluene	~ 20	87	46	-1.5
2a	Ph	t-Bu	CD-(8S,9R)-5f	КОН	10	Toluene	~ 20	88	41	-1.5
2a	Ph	t-Bu	CD-(8S,9R)-5f	KF	15	Toluene	-40	82	63	-2.2
2a	Ph	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	-40	85	67	-3.0
2a	Ph	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	10	Toluene	-40	78	61	-2.3
2b	p-MeOC ₆ H ₄	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	-40	89	71	-3.9
2c	$p-NO_2C_6H_4$	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	-40	94	30	-1.5
2d	Benzofuran-2-yl	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	-40	92	68	-3.4
2e	7-Et-benzofuran-2-yl	t-Bu	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	-40	87	50	-3.2
2f	Ph	i-Pr	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	-40	87	64	-2.8
2f	Ph	i-Pr	CD-(8S,9R)-5f	K ₂ CO ₃	10	Toluene	-40	75	61	-3.0
2g	p-MeOC ₆ H ₄	i-Pr	CD-(8S,9R)-5f	K ₂ CO ₃	15	Toluene	-40	78	64	-2.9
2h	$p-NO_2C_6H_4$	<i>i</i> -Pr	CD-(85,9R)-5f	K ₂ CO ₃	15	Toluene	-40	81	32	-1.8

^a Total yield for the two-step protocol (**2a**-**h** \rightarrow **4a**-**h**).

^b $c = 1 \text{ mg/ml} (CHCl_3).$

^c $[\alpha_D]$ value was not determined.

present letter, an enantioselective version of this protocol based on the use of modified *Cinchona* alkaloids is described

The preparation of 1-aryl-2,2-dihydroxyethanones **1a–e** was based on the known oxidation of aryl-methyl ketones using SeO₂ in an aqueous 1,4-dioxane solution.¹¹ Further condensation of **1a–e** with primary amines led to α -imino ketones **2a–h** (Scheme 1).^{10,12} As chiral catalysts, quaternary ammonium bromides **5a–g**, derived from *Cinchona* alkaloids were tested. They were prepared according to the literature procedures.^{5e,13}

The enantioselective synthesis of the target compounds was based on the modified protocol for obtaining racemic products (rac)-**4**.¹⁰ In the key step, addition of RPR to **2** was performed in the presence of a catalytic system consisting of enantiomerically pure ammonium bromide and an achiral co-catalyst. The mixture of both salts replaced cesium fluoride as an efficient initiator of the nucleophilic trifluoromethylation reaction. The obtained silylated ethers **3a**-**h** were used in further transformations without purification or determination of the enantiomeric excess. Reduction of the C=N bond and desilylation of the adducts of type **3a**-**h** with sodium borohydride gave β -amino- α -(trifluoromethyl) alcohols **4a**-**h**. The initial experiments were carried out with the

model substrate *N*-tert-butylphenyl- α -imino ketone **2a** in order to optimize the reaction conditions for the enantioselective addition of RPR (Scheme 1, Table 1).

On the basis of literature data and preliminary experiments, toluene was used as a non-polar solvent. Reactions were performed in the presence of 15 mol % of the catalysts: potassium fluoride and an appropriate chiral salt 5. In all cases, the final products were obtained in good yields. The use of bis-cinchonium bromide bis-CN-(8R,9S)-5b, which gave the best results in additions to aldehydes and ketones,^{5f} led to the desired product **4a** with very low enantiomeric excess. Tetramethylammonium fluoride was not tested as a co-catalyst in the present studies due to difficulties with the preparation of the catalyst in anhydrous form. Application of catalysts with an anthracenylmethyl substituent CN-(8R,9S)-5c and CD-(8S,9R)-5d did not improve the results significantly. A derivative of cinchonidine containing a 3,5-bis(trifluoromethyl)benzyl group CD-(8S,9R)-5f appeared to be the most effective catalyst and an ee of 60% was obtained. Application of quinidinium bromide QN-(8S,9R)-5g gave a worse result. In the case of pseudoenantiomeric catalysts CN-(8R,9S)-5c,e and CD-(8S,9R)-5d,f, product 4a was obtained with an opposite configuration and comparable ee values. In Download English Version:

https://daneshyari.com/en/article/5264398

Download Persian Version:

https://daneshyari.com/article/5264398

Daneshyari.com