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Abstract

A Bayesian framework is proposed for stereo vision where solutions to both the model parameters and the disparity map are posed in
terms of predictions of latent variables, given the observed stereo images. A mixed sampling and deterministic strategy is adopted to
balance between effectiveness and efficiency: the parameters are estimated via Markov Chain Monte Carlo sampling techniques and
the Maximum A Posteriori (MAP) disparity map is inferred by a deterministic approximation algorithm. Additionally, a new method
is provided to evaluate the partition function of the associated Markov random field model. Encouraging results are obtained on a stan-
dard set of stereo images as well as on synthetic forest images.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of stereo matching is to infer the optimal dis-
parity map for a given pair of images. Unfortunately,
hand-crafting of model parameters is often necessary to
ensure satisfactory results for specific image pairs [1]. A
remedy is to adopt the Bayesian paradigm which naturally
solves this problem of automatic parameter tuning, by
treating both the unknown disparity map and the related
parameters as random variables. The problem is then to
infer the optimal distributions of the random variables.
The merit of this scheme has been demonstrated in the
related area of medical image processing by Higdon et al.
[2]. However, the Bayesian approach is typically computa-

tionally demanding due to the use of sampling algorithms
to explore the space of plausible distributions.

We propose the use of a generative Bayesian framework
for stereo matching, which addresses the inference of dis-
parity map and the estimation of parameters under a uni-
fied scheme. Further, efficient Markov Chain Monte
Carlo (MCMC) methods [3] are proposed for parameter
estimation, and a deterministic approximation algorithm,
loopy belief propagation (LBP)1 [6], is adopted to infer
the disparity map.

Recently, a number of optimization methods have been
used to solve the stereo problem. These include using sim-
ulated annealing [7], dynamic programming [8] and LBP [9]
to infer the optimal disparity map. However, unlike the
proposed method, existing models are not fully Bayesian,
and their solution techniques are substantially different.
The novel contributions of this work are threefold. First,
stereo matching is explicitly addressed as a generative pro-
cess, as illustrated in Fig. 1. Second, a Bayesian framework
that naturally unifies the tasks of inferring the disparity
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map and estimating the model parameters, is proposed.
Third, a new method, based on the path sampling
approach [10], is derived to evaluate the partition function
of the underlying Markov random field (MRF). In partic-
ular, the proposed evaluation method is shown to bear
theoretical advantages over both the coding and the pseu-
do-likelihood method [11]. Moreover, it greatly reduces the
computational load when integrated into the MCMC sam-
plers, and empirical experiments demonstrate the conver-
gence behaviors of the proposed mixing strategy.

The Bayesian model is presented in Section 2, followed
by a mixed updating strategy in Section 3. Details regard-
ing the coding and the pseudo-likelihood methods are
shown in Appendix C.1, and details of the proposed parti-
tion function evaluation method are presented in Appendix
C.2. Finally, experiments are conducted in Section 4, with
an empirical analysis of convergence behavior of the pro-
posed approach addressed in Section 5.

2. The Generative Model

We assume a dense binocular stereo setting (e.g. [1]),
where two views (left and right images, rectified to satisfy
the epipolar constraint) of the same scene are presented.
With the left image being the reference view, the task is to
infer the disparity of each pixel, and to automatically esti-
mate the model parameters for the image pair. This model,
however, could be easily extended to more general scenarios.

Let i = 1, . . .,n index a 2D lattice of image pixels. Let
y = {yi} denote a 3D disparity space with each yi a vector
of length D, where D is the range of possible disparity val-

ues. Essentially, y stores sufficient statistics about the input
images, with each layer (see Fig. 1) storing the pixelwise
dissimilarities of the two images, after shifting the left
image horizontally a certain number of pixels. Therefore,
y is referred to as the ‘‘observed’’ disparity space. The dis-
parity map d = {di 2 {1, . . .,D}} is modelled as a Markov
random field (MRF) [12]. The proposed model consists
of two components: the sensor model and the prior model.
For the sensor model, p(y| d,ry, sy) captures the statistical
dependencies of the observation y on the latent disparity
MRF d, while the prior model p(d |rd, sd) addresses the
neighboring dependencies within the disparity map. For
convenience, denote the model parameters as h = {ry, sy,
rd, sd}, with (rd, sd) parameters of the prior model and
(ry, sy) parameters of the sensor model.

Because of the uncertainty of h for different image pairs
(see Fig. 1), Bayesian theory [13] treats h as unknown and
assigns a prior distribution for h. By establishing the likeli-
hood p(y| d,h), the priors p(d | h) and p(h), the joint poster-
ior is defined as

pðd; hjyÞ / pðyjd; hÞpðdjhÞpðhÞ: ð1Þ

Our task is then twofold. First, we want to infer the MAP
disparity map d*:

d� ¼ arg max
d

pðdjh�; yÞ; ð2Þ

where h* denotes the optimal parameter estimate. Second, we
have to estimate the model parameters h by its expectation

h� ¼
Z

h
hpðhjd; yÞdh: ð3Þ

2.1. The Sensor and the Prior Models

Given the random variable x 2 Rn and parameters (r, s),
we consider a class of density functions [2]

pðxjr; sÞ ¼ 1

rnzðsÞ exp � 1

s
uðxjr; sÞ

� �
: ð4Þ

Here uðxjr; sÞ ¼
P

iqðxi=r; sÞ is the energy function, and z(s)
is the normalization constant to ensure p(x|r,s) a valid den-
sity distribution. q(Æ, Æ) is the potential function, with scale
parameter r 2 (0,1) and shape parameter s 2 (0, 2]. We
further decompose x ¼ fxign

i¼1 to represent a random field
that could be either the MRF d or the disparity space y.

One reason for choosing this type of function is that the
potential function, q(Æ, Æ), unifies many existing function
forms, both convex and non-convex, into one general rep-
resentation [2]. In particular, it includes the generalized
Gaussian distribution, when the potential function admits
the following form,

q
x
r
; s

� �
¼ j x

r
js; ð5Þ

when s = 2 we have the Gaussian distribution.
In Fig. 2, the two panels in each row show the effect of

varying the shape parameter s, and the two panels in each
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Fig. 1. A 2 · 2 2D lattice example that illustrates the proposed generative
model for stereo matching. On the bottom, the 3D disparity space y is
compiled by measuring the pixelwise dissimilarities of the left and right
images with respect to shifts along the epipolar line. On the top, the
disparity map d is modelled as a Markov random field. For a node i, given
the latent disparity di, the pre-compiled observation yi is independent of
the rest of the disparity space y.

86 L. Cheng, T. Caelli / Computer Vision and Image Understanding 106 (2007) 85–96



Download English Version:

https://daneshyari.com/en/article/526466

Download Persian Version:

https://daneshyari.com/article/526466

Daneshyari.com

https://daneshyari.com/en/article/526466
https://daneshyari.com/article/526466
https://daneshyari.com

