FLSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Vanadium(IV) acetylacetonate catalyzed stereoselective synthesis of β -enaminoesters and β -enaminones

Rajibul A. Laskar^a, Naznin A. Begum^a, Mohammad Hedayetullah Mir^b, Shahzad Ali^c, Abu T. Khan^{c,*}

- ^a Bio-Organic Chemistry Lab, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, India
- ^b Department of Chemistry, Aliah University, DN 41, Salt Lake, Kolkata 700 091, India
- ^cDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India

ARTICLE INFO

Article history: Received 26 August 2012 Revised 10 November 2012 Accepted 12 November 2012 Available online 24 November 2012

This work is dedicated to Professor Mihir K. Chaudhuri, Vice-chancellor, Tezpur University on the occasion of his 65th birthday.

Keywords: β-Enaminoesters β-Enaminones β-Ketoesters 1,3-Diketones VO(acac)₂ Hydrogen bonding X-ray crystallography

ABSTRACT

An efficient and stereoselective procedure has been described for the synthesis of a series of β -enaminoesters and β -enaminones by vanadium(IV) acetylacetonate [VO(acac)₂] catalyzed reaction of β -ketoesters and 1,3-diketones with both aliphatic and aromatic amines. X-ray crystallographic studies of some representative compounds corroborate two types of structural geometry formed by inter-molecular as well as intra-molecular hydrogen bonds.

© 2012 Elsevier Ltd. All rights reserved.

β-Enaminoesters and β-enaminones are the building blocks for an important class of molecules synthesized from the β-dicarbonyl compounds. They are the precursors for a variety of versatile biologically active molecules like taxol, peptides, and alkaloids. Bhilding Chiral ligands for diastereoselective synthesis can also be obtained from the optically active enaminones. Moreover, the β-enaminoesters and β-enaminones are significant intermediates for the formation of β-aminoacids and γ-aminoalcohols. The major advantage of these compounds is their stability under simulated physiological pH conditions and low toxicity. Numerous methods for their syntheses are reported in the literature. He classical among them, is the condensation of amines and 1,3-dicarbonyl compounds where water is removed azeotropically by refluxing in aromatic solvents. Conversion with catalysts like Al₂O₃, SiO₂, montmorillonite K-10, AauCl₄, Zn(ClO₄)₂·6H₂O, AcOH under ultrasound, AcOH unde

reported recently. In spite of their applicability, these methods suffer from drawbacks like prolonged reaction time, 2,15 high temperature, 19 formation of amides as side products, expensive catalysts, 12,17,21 high catalyst loading, 20,22,26 and the use of hazardous solvents for example, benzene. Thus, a search for a new catalyst and simple procedure is of practical importance.

Vanadium acetylacetonate [VO(acac)₂] has been proven as a remarkable reagent in various organic syntheses due to its wide spectrum of applicability and profound reactivity. This low cost reagent is convenient to handle due to extremely low toxicity.^{28a} Moreover, it is soluble in organic solvents. The catalytic activity of VO(acac)₂ in the epoxidation of alkenes and geraniol, oxidation of dialkyl disulfides, and selective aerobic oxidation of activated alcohols into acids or aldehydes is well-known in the literature. 28-30 Recently, the use of VO(acac)2 as catalyst has been reported in the oxidation of β -dicarbonyl compounds, ³¹ olefination of α,α'-divinyl ketones through catalytic Meyer-Schuster rearrangement, 32a synthesis of benzimidazoles, 32b and synthesis of carbon nanospheres.³³ Very recently, we have demonstrated that a combination of VO(acac)₂, hydrogen peroxide, and sodium iodide is a good system for cleavage of dithioacetals of sugars into aldehyde sugars^{34a} and iodination of various organic substrates,^{34b} To

^{*} Corresponding author. E-mail address: atk@iitg.ernet.in (A.T. Khan).

the best of our knowledge, $VO(acac)_2$ catalyzed synthesis of β -enaminoesters and β -enaminones from β -ketoesters and 1,3-diketones has not yet been reported. Herein, we report an easy and selective procedure for the synthesis of a series of β -enaminoesters and β -enaminones from β -ketoesters and 1,3-diketones respectively using 10 mol % of $VO(acac)_2$ as catalyst as shown in Scheme 1.

For our study, the catalyst VO(acac)₂ was prepared by following the literature procedure.³⁵ For optimization of the reaction conditions, a mixture of methyl acetoacetate (2.4 mmol) and benzyl amine (2.0 mmol) was stirred at room temperature without adding any catalyst. After 3 days of continuous stirring, the desired product 3a was obtained in 55% yield along with unreacted starting materials. Next, the same mixture was stirred at room temperature in the presence of 1 mol % of vanadyl acetylacetonate and the product **3a** was isolated in 65% yield (Table 1, entry 2). Likewise, similar reactions were examined with 2 mol %, 5 mol %, 10 mol %, and 15 mol % successively and we have noted that 10 mol % catalyst is a sufficient amount for complete conversion as well as to obtain the best yield (Table 1, entries 3-6). However, the same transformation can be achieved using 5 mol % catalyst, but it requires longer duration. The product 3a was characterized by recording ¹H NMR, ¹³C NMR spectra, and elemental analysis.

After optimizing the reaction conditions,³⁶ the reaction of a wide variety of β -ketoesters ($1\mathbf{b}$ - \mathbf{j}) was examined with benzyl amine using 10 mol % of VO(acac)₂ at room temperature and the desired products $3\mathbf{b}$ - \mathbf{j} were obtained in good yields (Table 2, entries \mathbf{b} - \mathbf{j}). Similarly, various β -ketoesters ($1\mathbf{k}$ - \mathbf{s}) and aromatic amines were scrutinized in the presence of 10 mol % catalyst under identical reaction conditions and the products ($3\mathbf{k}$ - \mathbf{s}) were isolated in moderate to good yields. It is worth-while to mention that electron-rich aromatic amines take a shorter reaction time and provide good yields as compared to aromatic amine having electron-withdrawing substituents. Encouraged by these results, various 1,3-diketones ($1\mathbf{t}$ - \mathbf{x}) were treated with different aromatic amines and benzyl amine using the same amount of catalyst under similar reaction conditions and the results are given in Table 2.

Interestingly, acyclic β -ketoesters and 1,3-diketones result Z- β -enaminoesters and Z- β -enaminones with 100% stereoselectivity, respectively, whereas cyclic 1,3-diketones give exclusively E- β -enaminones as shown in Scheme 1.

From Table 2, it can be seen that the nucleophilic benzylamine reacts faster with a variety of β -ketoesters and 1,3-diketones to give β -enaminoesters and β -enaminones in excellent yields as compared to 2-methoxyaniline (entry 11) and 2,6-dimethylaniline (entry 10). A plausible mechanistic pathway has been outlined in Scheme 2.

To shed further light on the geometry of the compounds, the molecular structures of **3t** and **3v** were confirmed by a single crystal X-ray analysis (Fig. 1).³⁷ X-ray crystallographic experiments

Table 1Optimization of reaction condition using VO(acac)₂ catalyst^a

Entry	Catalyst used	Catalyst amount in (mol %)	Reaction time (min)	Product	Yield ^b (%)
1	No Catalyst	_	3 days	3a	55
2	$VO(acac)_2$	1	90	3a	65
3	$VO(acac)_2$	2	50	3a	74
4	VO(acac) ₂	5	30	3a	90
5	VO(acac) ₂	10	15	3a	93
6	VO(acac) ₂	15	15	3a	92

 $^{^{\}rm a}$ The reactions were carried out with methyl acetoacetate (2.4 mmol) and benzyl amine (2.0 mmol).

reveal that **3t** belongs to the triclinic space group $P\bar{1}$ with Z=4 whereas **3v** belongs to the monoclinic space group $P2_1/n$ with Z=4. Crystal structure analysis shows that **3t** forms two independent discrete molecules because of intra-molecular hydrogen bonding interactions $(O \cdots H=1.93 \text{ Å}, O \cdots N=2.696 \text{ Å}$ and $O \cdots H=1.74 \text{ Å}, O \cdots N=2.698 \text{ Å}$) leading to the formation of quasi-aromatic ring. On the other hand, **3v** forms 1D polymer via intermolecular hydrogen bonding interactions through $C=O \cdots H-N$ bonds $(O \cdots H=1.99 \text{ Å}, O \cdots N=2.810 \text{ Å}, <math>\angle O \cdots H-N=1.59^{\circ}$). The hydrogen-bonded ring formation could not be possible in the case of **3v** due to the structural constraint as shown in Figure 1a.

The ¹H NMR spectra of the products show two different kinds of chemical shifts of NH protons. Notably, the NH proton of β -enaminone (entry 3v and 3w) (derived from dimedone and benzylamine or dimedone and p-ethyl aniline) was found at 4.80 ppm and 5.95 ppm which supports the formation of E-isomer. In this case the intermolecular hydrogen bond causes the compound to become a 1D-zigzag hydrogen-bonded polymeric form as evident from the X-ray crystallographic structure of Figure 1a. The downfield shift of the NH proton is in the range of δ value 8.9–12.5 ppm which indicates the predominant formation of the Z- β -enaminonesters or Z- β -enaminones. The intra-molecular hydrogen bonding plays the key role in maintaining the geometry of the molecule intact and responsible for higher δ values because of the formation of quasi-aromatic ring which is evident from Figure 1b.

Again in the case of unsymmetrical diketone, benzoyl acetone (entries 3t-u), the amine always attacked the keto group positioned α - to the methyl group and in all cases; this is evident from the 1 H NMR spectra. The methyl group exhibited a distinctive singlet at 2.07 ppm, instead of 2.22 ppm which is a characteristic peak of the methyl group of $-COCH_3$.

Stereoselective syntheses of enaminones and enaminoesters using various catalysts have been well-studied.^{21,23b,27c} However, it provides further scope to design a particular substrate to obtain stereoselective products unequivocally. The major advantage of our procedure is the stereoselective formation of the products owing to the intermolecular and intramolecular hydrogen-bonding.

Scheme 1.

^b Isolated yield.

Download English Version:

https://daneshyari.com/en/article/5264747

Download Persian Version:

https://daneshyari.com/article/5264747

Daneshyari.com