Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp.

Yaming Zhou^a, Abdessamad Debbab^a, Victor Wray^b, WenHan Lin^c, Barbara Schulz^d, Rozenn Trepos^e, Claire Pile^e, Claire Hellio^e, Peter Proksch^a, Amal H. Aly^{a,*}

- ^a Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- ^b Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
- c National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Health Science Center, 100083 Beijing, People's Republic of China
- d Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstraße 7, D-31806 Braunschweig, Germany
- ^e School of Biological Sciences, King Henry 1st Street, University of Portsmouth, Portsmouth PO1 2DY, UK

ARTICLE INFO

Article history: Received 29 November 2013 Revised 15 February 2014 Accepted 18 February 2014 Available online 13 March 2014

Keywords: Aspergillus Marine natural products Sponge-derived fungi Tethva aurantium

ABSTRACT

Chromatographic separation of a crude extract obtained from the fungus Aspergillus sp., isolated from the Mediterranean sponge Tethya aurantium, yielded a new tryptophan derived alkaloid, 3-((1-hydroxy-3-(2 $methylbut-3-en-2-yl)-2-oxo indo lin-3-yl) methyl)-1-methyl-3, 4-dihydrobenzo [\it{e}] [1,4] diazepine-2, and the control of th$ 5-dione (1), and a new meroterpenoid, austalide R (2), together with three known compounds (3-5). The structures of the new compounds were unambiguously elucidated on the basis of extensive one and twodimensional NMR (¹H, ¹³C, COSY, HMBC, and ROESY) and mass spectral analysis. Interestingly, the compounds exhibited antibacterial activity when tested against a panel of marine bacteria, with 1 selectively inhibiting Vibrio species and 2 showing a broad spectrum of activity. In contrast, no significant activity was observed against terrestrial bacterial strains and the murine cancer cell line L5178Y.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Prevention or treatment of bacterial disease outbreaks in aquacultures is a major challenge facing this industry. For instance, destructive infections caused by bacteria of the genus Vibrio and those causing necrotizing hepatopancreatitis (NHP) are the main diseases commonly affecting shrimp farms.² Hence, there is a great need for new antibiotics to combat such diseases and the resulting stock loss, especially with the development of bacterial resistance to traditionally used antibiotics.¹

A potential source of novel antibacterial compounds is marinederived fungi, which have attracted considerable attention in recent years.³⁻⁵ They have been isolated from virtually every possible marine habitat, including inorganic matter, microbial communities, plants, invertebrates and vertebrates. In particular, sponges have yielded numerous fungal strains, which have been reported to produce a variety of pharmacologically active and structurally diverse metabolites.^{3,6–11} The need of these organisms to adapt and survive in an environment that is significantly different from that of terrestrial organisms may have shaped their natural

The chemical profiles of both terrestrial and marine Aspergillus species have been studied by several research groups, and a vast diversity of secondary metabolites with novel structures and interesting biological activities was already elucidated. 16-25 In continuation of our previous studies on the sponge-derived Aspergillus sp. strain, isolated from the Adriatic Sea sponge Tethya aurantium, two new compounds, 3-((1-hydroxy-3-(2-methylbut-3-en-2-yl)-2-oxoindolin-3-yl)methyl)-1-methyl-3,4-dihydrobenzo[e][1,4]diazepine-2,5-dione (1) and austalide R (2), as well as the known compounds 8-0-4-dehydrodiferulic acid (3), cytochalasin Z17 (4), and dihydroisoflavipucine (5) (Fig. 1), were now isolated and identified. All compounds exhibited antibacterial activity against marine-derived strains, with 1 selectively inhibiting Vibrio species and 2 showing a broad spectrum of activity, which may raise the prospect of using such compounds as antifouling agents or to combat epizootics in aquaculture in the future.

Results and discussion

The crude ethyl acetate extract of the fungus Aspergillus sp. was subjected to repeated column chromatography, followed by semi

product patterns resulting in many cases in the production of unique secondary metabolites. 12-15

^{*} Corresponding author. Tel.: +49 211 81 14173; fax: +49 211 81 11923. E-mail address: amal.hassan@uni-duesseldorf.de (A.H. Aly).

Figure 1. Structures of 1-7.

preparative HPLC separation, to afford two new compounds (1 and 2), along with three known compounds (3–5) (Fig. 1).

The molecular formula of **1** was established as $C_{24}H_{25}N_3O_4$ on the basis of the [M+H]⁺ signal at m/z 420.1917 in the HRESIMS. The UV absorbance bands observed at $\lambda_{\rm max}$ (MeOH) 214.1, 250.1, and 290.0 nm suggested the presence of an indoline chromophore. The ¹H NMR and COSY spectra of **1** (Table 1) revealed the presence of eight aromatic protons corresponding to two ABCD spin systems resonating at $\delta_{\rm H}$ 7.30, 6.90, 7.21, and 6.73 ppm (H-5 to H-8, respectively) and at $\delta_{\rm H}$ 7.24, 7.50, 7.18, and 7.27 ppm

Table 1 1 H, 13 C NMR, COSY, and HMBC data of **1** at 300 (1 H) and 100 (13 C) MHz (DMSO- d_{6} , δ in ppm, J in Hz)

Position	δ_{H}	δ_{C}	COSY	НМВС
1				
2		172.3		
3		54.7		
4		124.8		
5	7.30 d (7.8)	126.6	6	3, 7, 9
6	6.90 dt (0.1, 7.6)	120.8	5, 7	4, 7, 8
7	7.21 t (7.7)	128.0	6, 8	5, 8, 9
8	6.73 d (7.6)	106.3	7	4, 6, 9
9		142.7		
10	2.30 dd (7.7, 14.9)	28.9	11	2, 3, 4, 11, 12, 22
	2.70 dd (3.2, 14.9)			
11	2.90 br m	49.6	10, 17	
12		169.9		
13				
14		140.1		
15		128.2		
16		166.8		
17	8.18 d (5.9)		11	10, 11, 15
18	7.24 d (8.3)	121.6	19	15, 20
19	7.50 dt (1.7, 8.5)	132.0	18, 20	14, 18, 21
20	7.18 t (8.4)	125.1	19, 21	15, 18
21	7.27 d (8.3)	128.8	20	14, 16, 19
22		41.8		
23	6.07 dd (10.8, 17.4)	142.9	24	22, 25, 26
24	4.94 dd (0.1, 17.4)	113.4	23	22, 23
	5.02 dd (0.1, 10.9)			
25	0.98 s	21.3		3, 22, 23, 26
26	0.98 s	22.5		3, 22, 23, 25
27	3.15 s	34.9		12, 14

(H-18 to H-21, respectively), an olefinic ABX spin system at δ_H 4.94/5.02 (H₂-24) and 6.07 (H-23) ppm, an aliphatic ABX spin system at δ_H 2.30/2.70 (H₂-10) and 2.90 (H-11) ppm, two geminal methyl groups at δ_H 0.98 ppm (H₃-25 and H₃-26), a nitrogen bearing methyl group at δ_H 3.15 ppm (H₃-27), and a NH group at δ_H 8.18 ppm (H-17).

The ^{13}C NMR (Table 1) and DEPT spectra confirmed the presence of 24 carbon atoms in the structure of 1, including one aliphatic and nine olefinic methine groups, one aliphatic and one olefinic methylene group, three methyl groups, as well as two aliphatic and seven olefinic quaternary carbon atoms, the latter including three amide carbonyl carbons resonating at δ_{C} 172.3, 169.9, and 166.8 ppm (C-2, C-12, and C-16, respectively). Furthermore, analysis of the HMQC spectrum allowed the assignment of proton signals to the corresponding proton bearing carbon atoms.

The identified spin systems of 1 were connected based on inspection of the HMBC spectrum (Table 1, Fig. 2), Correlations of the tertiary methyl group protons H_3 -27 (δ_C 34.9 ppm) to the amide carbonyl C-12 and to C-14 ($\delta_{\rm C}$ 140.1 ppm), of H-18 to C-15 $(\delta_{\rm C} 128.2 \, \rm ppm)$ and C-20, of H-21 to C-14, C-16, and C-19, of the amide proton H-17 to C-10 (δ_C 28.9 ppm), C-11 (δ_C 49.6 ppm), and C-15, and of H₂-10 to C-11 and C-12, established the 1methyl-1,4-benzodiazepine-2,5-dione moiety of 1. Further correlations of H₂-10 to C-2 (δ_C 172.3 ppm), C-3 (δ_C 54.7 ppm), C-4 (δ_C 124.8 ppm), and C-22 ($\delta_{\rm C}$ 41.8 ppm), of H-5 to C-3, C-7, and C-9 ($\delta_{\rm C}$ 142.7 ppm), and of H-8 to C-4, C-6 and C-9, corroborated the presence of an indolin-2-one moiety and revealed its connection with the 1,4-diazepine-2,5-dione ring through CH2-10. The 2methylbut-3-en-2-yl side chain was verified by correlations of both methyl groups CH₃-25 (δ_{C} 21.3 ppm) and CH₃-26 (δ_{C} 22.5 ppm) to each other and to C-3, C-22, and C-23 ($\delta_{\rm C}$ 142.9 ppm), of the olefinic proton H-23 to C-22, C-25, and C-26, and of H_2 -24 (δ_C 113.4 ppm) to C-22 and C-23. The hydroxyl group was located at N-1 as the assignment of all other atoms was completed, and based on comparison of observed chemical shift values with those reported for similar 1-hydroxyindolin-2-one substructures.²⁷ Hence. **1** was determined as a novel metabolite with an unusual structural framework and named 3-((1-hvdroxv-3-(2methylbut-3-en-2-yl)-2-oxoindolin-3-yl)methyl)-1-methyl-3,4dihydrobenzo[e][1,4]diazepine-2,5-dione. Attempts to determine the relative configuration of 1 by analysis of the ROESY spectrum failed due to free rotation around the methylene bridge CH₂-10.

HRESIMS indicated the molecular formula $C_{25}H_{32}O_9$ for **2** in accordance with the [M+H]⁺ signal at m/z 477.2119. Its UV spectrum showed characteristic maxima of an austalide at λ_{max} (MeOH) 222.6 and 268.5 nm.²⁸ The ¹H and ¹³C NMR spectra (Table 2) revealed five methyl groups at $\delta_{\rm H}$ ($\delta_{\rm C}$) 0.79 (18.2), 1.29 (28.8), 1.32 (29.1), 1.43 (25.6), and 1.99 (10.5) ppm (CH₃-27, -24, -26, -25, and -23, respectively), and one methoxy group at $\delta_{\rm H}$ 4.01 ($\delta_{\rm C}$ 62.5) ppm (OCH₃-29). Additionally, four methylene groups, including the oxygenated benzylic methylene group at C-1 ($\delta_{\rm H}$ 5.25, $\delta_{\rm C}$ 68.1 ppm), and three methine groups, two of which were situated

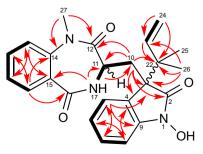


Figure 2. Key COSY () and HMBC () correlations observed for 1.

Download English Version:

https://daneshyari.com/en/article/5264780

Download Persian Version:

https://daneshyari.com/article/5264780

<u>Daneshyari.com</u>