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Abstract

In this paper, we propose a novel method for shape analysis that is suitable for any multi-dimensional data set that can be modelled as
a manifold. The descriptor is obtained for any pair (M, @), where M is a closed smooth manifold and ¢ is a Morse function defined on M.
More precisely, we characterize the topology of all pairs of sub-level sets (M,, M) of ¢, where M, = ¢ ((—oo, a)), for all a € R. Clas-
sical Morse theory is used to establish a link between the topology of a pair of sub-level sets of ¢ and its critical points lying between the

two levels.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In computer vision, the problems of shape recognition,
classification, and matching require adequate tools to rep-
resent shape properties by means of descriptors. Such
descriptors allow to measure several shape characteristics
of statistical, geometrical, or topological nature. In this
paper we focus on topological descriptors since they pro-
vide information that can remain constant despite the var-
iability in appearance of objects due to noise, deformation
and other distortions. They also allow significant reduction
in the amount of data while providing sufficient informa-
tion to characterize and represent objects. We construct
topological descriptors for objects modelled as smooth
manifolds which are based on the knowledge of Morse
functions that measure some metric properties of the given
objects. So our descriptors are really built of a marriage
between the geometric and topological properties of the
objects under consideration.
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More precisely, our descriptors are obtained as follows.
Consider a pair (M, ¢), where M is a closed smooth mani-
fold and ¢ is a Morse function defined on M. We denote by
M, the sub-manifold of M also called the sub-level set of ¢
and consisting of all points of M at which ¢ takes values
less than or equal to ¢, i.e., M,={p € M|p(p) <t}. We
associate to the pair (M, @) a structure that encodes the
topology of all pairs of sub-level sets (M,, M,) of ¢, as x,
y(x < y) vary in R. We want to emphasize the fact that
we apply homology not to the manifold M itself, but to
derived spaces that have richer geometric content. In this
case, we construct spaces out of M by using sub-levels of
a Morse function on M.

The framework of classical Morse theory [9,8] allows to
establish a link between the topology of a given pair of sub-
level sets of ¢ and its critical points lying between the two
levels. A number of results in this theory prove that the
changes in topology of M are intimately related to the pres-
ence of critical points of some Morse function on M. For
instance, the well-known Morse inequalities provide a
lower bound for the number of critical points of index 4
of a Morse function on M in terms of the Betti number
piAM), which is determined by the topological shape
of M. Moreover, the assumptions on M being closed
smooth manifold and ¢ is a Morse function allow to justify
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considering only a finite number of sub-level sets and,
hence, obtaining a discrete but satisfactory description
of the shape of M. In practice, one can include open
connected surfaces and bounded Morse functions.

We use relative homology groups to compute the topol-
ogy of pairs of sub-level sets of a given pair (M, ¢). The dif-
ferent levels of relative homology groups of the whole
structure of sub-level sets encode complete topological
information about the critical regions of the manifold as
well as the extension of the regions where no topological
change is observed. For the experimental results, our man-
ifold is given in a form of a simplicial complex. In other
words, we assume that our manifold M is the support of
a simplicial complex K (see Section 2.2 for an overview
on cell-complexes and homology) and a special care is
taken in the sampling process to ensure that all sub-level
sets of the manifold are sub-complexes of K. The final
structure consists of matrices each of which is encoding a
different level of relative homology. Two structures
associated to two pairs (M1, ¢,) and (M,, ¢,) are compared
by defining an appropriate distance function between the
two collections of associated matrices.

Our structure allows to recover two very well-known
topological descriptors, namely the size functions [5,13]
and the presentations of homology groups in [4]. Size func-
tions are defined in terms of the number of connected com-
ponents of sub-level sets associated with a given curve and
a suitable measuring function defined on the curve. They
can easily be reformulated with the concepts of homology
and relative homology as done in [2].

First, we give a brief overview of some techniques
from algebraic topology. Then we follow with a section
on the basic concepts of Morse theory. In Section 3,
we introduce the main definitions and characteristics of
the new shape descriptor. Computational results are pre-
sented in Section 4 followed by a brief conclusion in the
last section.

2. Brief overview of algebraic topology

In this section, we give a brief review of basic notions
and terminology of algebraic topology. The discussion will
be informal and is intended to give an idea of what these
notions are about. For a more complete description, we
refer the reader to any standard text in the area, such as
[6,10,12], or a more recent text [7] that uses a computer
to develop a combinatorial computational approach to
the subject.

2.1. Homotopy
A very important notion in algebraic topology is that of

a homotopy of maps between topological spaces. Two
maps f,g: X — Y are said to be homotopic if there is a con-

tinuous map /: X x[0,1]— Y, called a homotopy between f

and g, so that i(x,0) = fix) and A(x,1) = g(x) for all x € X.
We write f = g whenever fis homotopic to g. The map 4 is

called a homotopy of f'to g. We may think of / as a way of
“deforming” f continuously to g, as ¢ varies from 0 to 1.
For example, any two continuous maps f,g: X — R" are
homotopic for any topological space X. The formula
h(t,x) = (1 — t)fix) +tg(x) is called the straight-line
homotopy between them. A map f: X — Y is a homotopy
equivalence if there is a map g: Y — X so that f o g is homo-
topic to the identity map on Y and g o fis homotopic to the
identity map on X. This is a weakening of the notion of
homeomorphism that requires fo g and go f to be equal
to the corresponding identity maps. Two spaces X and Y
are said to be homotopy equivalent, or to have the same
homotopy type, if there is a homotopy equivalence from
X to Y. This is denoted by X = Y. Let A c X. A retraction
of X onto A is a continuous map r: X — A such that
r(a) = a for each a € A. We then say that 4 is a retract of
X. A deformation retraction of X onto A is a continuous
map h: Xx[0,1]— X such that A(x,0)=x for x€ X,
h(x,1) € A, for all x € X, and h(a,t) =a, for all a € A4,
and ¢ € [0, 1]. If such an 4 exists, we say that A4 is a deforma-
tion retract of X. If A is a deformation retract of X, then 4
and X are homotopy equivalent. Indeed, if i denotes the
inclusion of 4 into X and r(x) = A(x, 1), then r o i is equal
to the identity map on A, and i o r is homotopic to the iden-
tity on X.

Example 2.1. Let X be the annulus shown in Fig. 1. We
parameterize it with polar coordinates (r,0),1 <r <2,
0 < 0<2m. Let A be the unit circle and f be the map from
X to A given by f(r,0) =(1,0). Then f is a homotopy
equivalence, since the inclusion of the circle into X provides
the required map g. It is easily seen that f is a retraction
from X onto A and the map A(r,0,f)=t
fir,0) + (1 — £)(r,0) defines a deformation retraction of
the annulus onto the unit circle.

2.2. Homology

In most cases, it is rather complicated to decide when
two maps between spaces are homotopic, or two spaces
are homotopy equivalent. In applications where a topolog-
ical tool is needed to compare between spaces and maps,
one is usually satisfied in comparing their homology struc-
tures which are coarser but computable. Although homol-
ogy is less intuitive than homotopy, its combinatorial

Fig. 1. A circle is a deformation retract of the annulus.
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