ELSEVIER ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Lewis base-catalyzed double nucleophilic substitution reaction of *N*-tosylaziridinofullerene with thioureas or guanidines

Qi Meng*, Jun-Yu Cheng, Chun-Bao Miao, Xiao-Qiang Sun, Hai-Tao Yang*

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

ARTICLE INFO

Article history: Received 30 March 2017 Revised 13 May 2017 Accepted 15 May 2017 Available online 17 May 2017

Keywords: Tosylaziridinofullerene Double nucleophilic substitution Thiourea Guanidine

ABSTRACT

Lewis base-catalyzed double nucleophilic substitution reaction of N-tosylaziridinofullerene with thioureas or guanidines affords the fullerothiazolidin-2-imine or fulleroimidazolidin-2-imine derivatives, respectively. In the case of unsymmetrical thioureas connecting an alkyl and an aryl group on each of the nitrogen atom, the transformation exhibits excellent chemoselectivity with only the aryl substituted nitrogen atom bonding to C_{60} . The generated tri-4-methoxyphenyl substituted fulleroimidazolidin-2-imine reacts with CS_2 smoothly to generate di-4-methoxyphenyl fulleroimidazolidin-2-thione.

© 2017 Elsevier Ltd. All rights reserved.

Introduction

There has been a good understanding of the chemical reactivity of C₆₀ and a large number of highly functionalized fullerenes have been efficiently synthesized by various techniques. Nevertheless, the diversity in the structures of fullerene derivatives may lead to the creation of new application in the fields of material and biomedicine science,² further exploration and development of new synthetic methods toward organofullerenes with sophisticated and unprecedented architectures is still required.³ At present, most of the fullerene derivatives are prepared directly from pristine C_{60} through one-step reaction. However, not all the fullerene derivatives can be easily synthesized from C_{60} . Thus, the development of new routes to access functionalized fullerenes with novel structure from an easily prepared fullerene derivative is in demand. For instance, the fullerene epoxide, 4 N-tosylaziridinofullerene, 5 azafulleroids, and NFSI adduct of C₆₀⁷ have been reported to undergo various transformations to furnish a diversity of functionalized fullerenes. Especially the N-tosylaziridinofullerene, which can be easily synthesized from sulfonamides in good yield, not only takes place a formal [3 + 2] reaction with isocyanates, CO₂, or carbonyl compounds¹⁰ with the reserve of "TsN" unit but also undergo a unique double nucleophilic substitution reaction with dinucleophiles accompanied by the loss of "TsN" unit. 11 The CF₃SO₃H

 $\label{eq:commutation} \textit{E-mail addresses:} \quad \text{mengqi@cczu.edu.cn} \quad \text{(Q. Meng), } \quad \text{yht898@yahoo.com} \\ \text{(H.-T. Yang).}$

and combination of HPCy₃BF₄-NaH have proved to be the effective catalysts. ^{5b,9} Recently, we applied commonly used bases such as DMAP (4-dimethylaminopyridine) or NMI (N-methylimidazole) as a catalyst in the double nucleophilic substitution of N-tosylaziridinofullerene with amidines or ureas for the easy preparation of cyclic 1,2-diaminated [60] fullerenes. ^{11a,11b} The easy operation process and the highly synthetic efficiency encouraged us to develop more transformation through the easily available N-tosylaziridinofullerene. Thiourea and guanidine have structure similarity with urea just with the variation of C=O double bonds to C = S/N double bonds (Fig. 1). We were inquisitive about whether the thiourea and guanidine can react with N-tosylaziridinofullerene to afford two new classes of organofullerenes via a similar transformation.

Results and discussion

Our investigation began with the reaction of N-tosylaziridino-fullerene ${\bf 1}$ with 1,3-dibenzylthiourea ${\bf 2a}$. Those reported effective catalyst in the transformations of N-tosylaziridinofullerene such as CF₃SO₃H, BF₃·Et₂O, DMAP, and NMI were tried firstly (Table 1, entries 1–4). Sb,10,11a,11b The CF₃SO₃H and BF₃ Et₂O showed no catalytic activity and almost all of the ${\bf 1}$ was converted to C₆₀ (Table 1, entries 1 and 2). Using DMAP as the catalyst gave a single product. However, the NMR analysis revealed that it was not the anticipated diaminated product but the fullerothiazolidin-2-imine ${\bf 3a}$. The yield was not satisfactory and only 51% yield of ${\bf 3a}$ was obtained after stirring for 3 h at 80 °C

^{*} Corresponding authors.

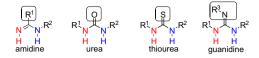


Fig. 1. Structures of the amidine, urea, thiourea, and guanidine.

(Table 1, entry 3). Increasing the temperature to 120 °C had no improvement on the yield because a large amount of N-tosylaziridinofullerene was transformed to C₆₀. Although increasing the amount of DMAP to 1 equiv could complete the conversion within 1 h and gave higher yield of 3a, large decomposition of 1 to C₆₀ was inevitable (Table 1, entry 4). The NMI gave a decent yield of 3a, however, a considerable decomposition of 1 to C_{60} occurred also (Table 1, entry 5). Next, other Lewis base/acid catalysts such as Sc(OTf)₃, Zn(OTf)₂, Cu (OTf)₂, Et₃N, pyridine, and DABCO were examined (Table 1, entries 6-13). To our delight, the DABCO could efficiently catalyze the reaction, affording 91% yield of the product within 1 h at 80 °C (Table 1, entry 8). Reducing the amount of DABCO to 0.2 equiv led to longer reaction time to complete the reaction, whereas, more starting material was decomposed to C_{60} (Table 1, entry 9). Replacing DABCO with Et₃N, pyridine, or K₂CO₃ resulted in dramatic decrease in the yield or no reaction (Table 1, entries 6, 7, and 10). The commonly used Lewis acids such as Sc(OTf)₃, Zn(OTf)2, and Cu(OTf)2 also displayed certain catalytic activity, albeit with a much lower yield (Table 1, entries 11-13).

With the optimal conditions in hand, the substrate scope for the transformation was evaluated. As illustrated in Table 2, the preparative scope was rather general regardless of whether alky or aryl groups were presented on the nitrogen atoms, giving moderate to excellent yield of fullerothiazolidin-2-imines 3. For dialkylated thioureas, a noticeable steric effect was observed. Compared with the high yield of 3a and 3b, only 69% yield of 3c was obtained

for the N,N'-diisopropylthiourea 2c and no desired product was isolated for N,N'-di-tert-butylthiourea. When one of the tert-butyl was replaced by benzyl, the reaction occurred to selectively provide **3d** in 88% yield with sterically less hindered nitrogen atom bonding to C₆₀. In terms of the diarylated thioureas, using DABCO as the catalyst gave a low conversion as detected by TLC. Replacing DABCO with DMAP and increasing the temperature to 120 °C gave good yield of **3f-i**. It should be noted that only catalytic amount of DMAP was required. For the unsymmetrical diarylated thiourea 2i, which connected an electron-donating and electron-withdrawing group on each of the nitrogen atom, its reaction with 1 showed low chemoselectivity, affording an inseparable mixture of the two isomers 3j and 3j' (3j:3j' = 1.44:1) in overall 69% yield. In the major isomer, the nitrogen atom bearing an electron-rich aryl group bonded to C_{60} probably due to its stronger nucleophilicity. To investigate the influence of different types of substituents on the reaction, the thioureas **2k-m** having an alkyl and an aryl group on each of the nitrogen atom were prepared and introduced to the reaction. When one of the nitrogen atoms linked with an alkyl group, DABCO could effectively catalyze the transformation. It was noteworthy that the reaction of 1 with 2k-m showed excellent chemoselectivity and only single isomer was obtained with the arylated nitrogen atom bonging to C_{60} . In the case of the N-benzyl-N'-tosylthiourea 2n, although it displayed lower reactivity, its reaction with 1 showed high selectivity and furnished single isomer **3n**. The catalytic system showed a high degree of functional group tolerance and the alkenyl, ester, hydroxyl, and acetal groups were compatible with the conditions to afford good yields of 3e, 3i, 3j, 3l, and 3m. Compared with our previous reported Lewis basecatalyzed reaction of 1 with amidines or ureas, in which the two substituents of amidines were restricted to both aryl groups and one of the substituent of ureas was limited to electron withdrawing group such as Ts and Bz group, 11a,11b the thioureas displayed more extensive substrate scope in its reaction with 1.

Table 1 Screening of the Catalysts.^a

Entry	Conditions	Molar ratio ^b	T (°C)	Time (h)	Yield (%) ^c
1	BF₃-Et₂O	1:1.5:5	80	0.5	0
2	CF ₃ SO ₃ H	1:1.5:2	80	0.5	0
3	DMAP	1:1.5:0.2	80	3	51
4	DMAP	1:1.5:1	80	1	67
5	NMI	1:1.5:1	80	2	71
6	Et ₃ N	1:1.5:1	80	6	40
7	pyridine	1:1.5:1	80	6	35
8	DABCO	1:1.5:1	80	1	91
9	DABCO	1:1.5:0.2	80	4	77
10	K_2CO_3	1:1.5:2	120	3	0
11	Sc(OTf)₃	1:1.5:0.5	120	4	53
12	$Zn(OT f)_2$	1:1.5:0.5	120	6	21
13	Cu(OTf) ₂	1:1.5:0.5	120	4	47

^a Unless notified, the reactions were carried out (1, 0.02 mmol) in 2.5 mL of dry chlorobenzene.

b 1:2a:catalyst.

c Isolated yield.

Download English Version:

https://daneshyari.com/en/article/5265032

Download Persian Version:

https://daneshyari.com/article/5265032

<u>Daneshyari.com</u>