Tetrahedron Letters 54 (2013) 657-660

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Palladium-catalyzed one-pot Suzuki–Miyaura cross coupling followed by oxidative lactonization: a novel and efficient route for the one-pot synthesis of benzo[*c*]chromene-6-ones

Raju Singha, Soumyabrata Roy, Sukla Nandi, Priyanka Ray, Jayanta K. Ray*

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India

ARTICLE INFO

Article history: Received 18 October 2012 Revised 27 November 2012 Accepted 30 November 2012 Available online 7 December 2012

Keywords: One-pot synthesis Benzo[c]chromene-6-one Naphtho[1,2-c]chrome-5-one Naphtho[2,1-c]chromene-6-one Suzuki-Miyaura cross coupling Oxidative lactonization

ABSTRACTS

A number of 6*H*-benzo[*c*]chromene-6-ones, 5*H*-naphtho[1,2-*c*]chrome-5-ones, and 6*H*-naphtho[2,1*c*]chromene-6-one have been synthesized starting with 2-hydroxyphenylboronic acid and *o*-bromobenzaldehyde or *o*-bromonaphthalene carboxaldehyde derivatives via a one-pot Suzuki–Miyaura cross coupling followed by oxidative lactonization reactions. The overall transformation consists of three reactions: Suzuki–Miyaura cross coupling, hemi-acetal formation, and oxidation.

© 2012 Elsevier Ltd. All rights reserved.

Benzo[*c*]chromen-6-ones and the relevant lactones serve as the core structure of many natural products,¹ such as autumnariol (Fig. 1, **1**), alternariol, altenuisol, autumnariniol, and graphislactones (Fig. 1, **2**) and in biologically important compounds.² They are also present in a number of natural antitumor and antibiotic agents, such as chrysomycins (Fig. 1, **3**), gilvocarcins, and ravid-omycins.³ In addition, such lactones are also important as intermediates for the synthesis of several pharmaceutically important compounds, such as progesterone, androgen, glucocorticoid receptor agonists,⁴ and endothelial cell proliferation inhibitors.⁵ Benzo[*c*]chromen-6-ones also occur naturally in a number of food resources including citrus fruits, herbs, and vegetables.⁶

There are several methods available for the synthesis of benzo[*c*]chromen-6-ones which usually are multi-step processes. Some of these recent methods are the Diels–Alder cycloaddition of 4-cyanocumarins,⁷ *tert*-butyllithium-mediated cyclization of bromobenzylfluorophenyl ethers,⁸ and ruthenium-catalyzed cyclotrimerization of aryl diynes.⁹ The most used method involves Suzuki–Miyaura cross coupling of methyl 2-bromobenzoate and 2-methoxyphenylboronic acids followed by Lewis acid¹⁰ or metal¹¹ mediated lactonization. There are also some other synthetic routes for the lactonization step, such as, the direct lactonization of carboxylic acid,¹³ and the displacement of a benzyl

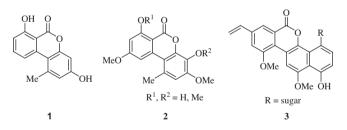
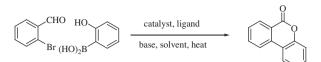


Figure 1. Structure of some natural products and bioactive compounds.

group.¹⁴ However, these methods are the multi-step sequences and need purification of intermediates. Thus, a new route for the synthesis of benzo[c]chromen-6-ones from readily available starting materials in a single step is still of critical importance.

Herein, we have reported a novel and efficient methodology for the one pot synthesis of benzo[*c*]chromen-6-ones and its higher analogues by reacting 2-bromobenzaldehyde or *o*-bromonaphthalene carboxaldehyde derivatives with 2-hydroxyphenylboronic acid via Suzuki–Miyaura cross coupling followed by oxidative lactonization¹⁵ of aldehyde and hydroxy groups.

Our investigation began with an effort to optimize reaction conditions for the one-pot synthesis of benzo[*c*]chromen-6-ones and its higher analogues and for that 2-bromobenzaldehyde and 2-hydroxyphenylboronic acid were chosen as the coupling partners for Suzuki–Miyaura cross coupling reaction. Then various

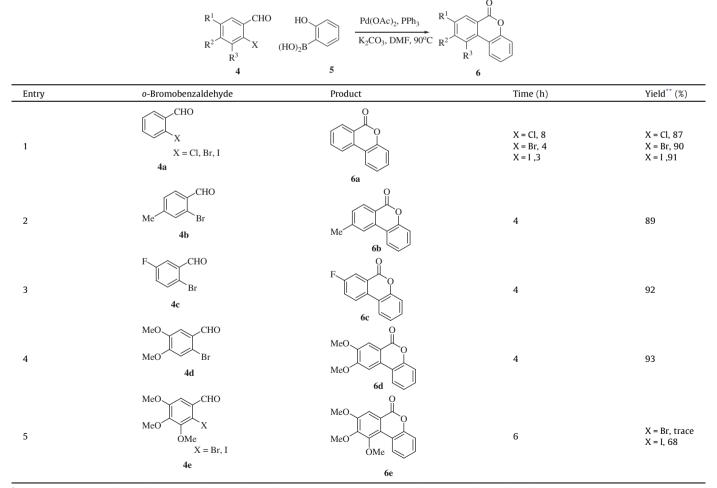


^{*} Corresponding author. Tel.: +91 3222283326; fax: +91 3222282252. *E-mail address:* jkray@chem.iitkgp.ernet.in (J.K. Ray).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.11.144

Table 1

Screening of the reaction conditions*


Entry	Catalyst	Ligand	Base	Solvent	Temperature (°C)	Time (h)	Yield**
1	$Pd(OAc)_2$	PPh_3	NaOAc	DMF	80	6	63
2	$Pd(OAc)_2$	PPh_3	Na_2CO_3	DMF	80	6	86
3	$Pd(OAc)_2$	PPh_3	K ₂ CO ₃	DMF	80	6	89
4	$Pd(OAc)_2$	PPh_3	Cs ₂ CO ₃	DMF	80	6	87
5	$Pd(OAc)_2$	PPh_3	Et ₃ N	DMF	80	6	47
6	PdCl ₂	PPh ₃	K ₂ CO ₃	DMF	80	6	81
7	$PdCl_2(PPh_3)_2$	_	K ₂ CO ₃	DMF	80	6	80
8	$Pd(PPh_3)_4$	_	K ₂ CO ₃	DMF	80	6	75
9	$PdCl_2(CH_3CN)_2$	PPh_3	K ₂ CO ₃	DMF	80	6	78
10	Pd ₂ (dba) ₃	PPh_3	K ₂ CO ₃	DMF	80	6	67
11	$Pd(OAc)_2$	PPh_3	K ₂ CO ₃	DMF	90	4	90
12	$Pd(OAc)_2$	PPh_3	K ₂ CO ₃	DMF	95	4	89
13	$Pd(OAc)_2$	PPh ₃	K ₂ CO ₃	DMA	90	4	82
14	$Pd(OAc)_2$	PPh ₃	K ₂ CO ₃	DMSO	90	4	76
15	$Pd(OAc)_2$	PPh ₃	K ₂ CO ₃	CH ₃ CN	90	4	62

* Reactions were carried out with 0.2 mmol of 2-bromobenzaldehyde, 2-hydroxyphenylboronic acid (1 equiv), catalyst (5 mol %), ligand (0.25 equiv), base (1 equiv), and solvent (1 mL).

** Isolated yield by column chromatography.

Table 2

One-pot synthesis of benzo[c]chromen-6-ones*

* Reactions were carried out with 1 mmol of 2-bromobenzaldehyde derivatives, 2-hydroxyphenylboronic acid (1 equiv), Pd(OAc)₂ (5 mol %), PPh₃ (0.25 equiv), K₂CO₃ (1 equiv), DMF (3 mL), and heated at 90 °C.

Isolated yield by column chromatography.

Download English Version:

https://daneshyari.com/en/article/5265061

Download Persian Version:

https://daneshyari.com/article/5265061

Daneshyari.com