ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Aerobic ligand-free domino Suzuki coupling—Michael addition reaction catalyzed by in situ generated palladium nanoparticles in water: a general method for the synthesis of benzo[c]chromene derivatives

Atiur Ahmed, Yasin Nuree, Jayanta K. Ray*

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India

ARTICLE INFO

Article history: Received 26 September 2012 Revised 29 November 2012 Accepted 1 December 2012 Available online 7 December 2012

Keywords:
Benzo[c]chromene
Domino reaction
Suzuki coupling
Michael addition
Palladium nanoparticles
Wittig reaction

ABSTRACT

A general method has been developed for the synthesis of benzo[c]chromene derivatives via aerobic ligand-free domino Suzuki coupling and Michael addition reaction catalyzed by in situ generated palladium nanoparticles in water leading to C–C and C–O bond formations simultaneously.

© 2012 Elsevier Ltd. All rights reserved.

Benzo[c]chromenes are very important oxygen containing heterocycles because of their presence in a large number of bioactive molecules as a key structural subunits. Figure 1 represents some important bioactive molecules containing these moieties. Utility of benzo[c]chromenes in photochemical reactions as photoswitches is important. For example, 5H-dibenzo[c,g]chromen-3-ol shows biological activity as an estrogen receptor agonist. So development of a general route for the synthesis of benzo[c]chromene skeletons by using readily available starting materials has attracted researchers over past decades.

Palladium catalyst has proven its novelty and versatility toward the synthesis of fused-heterocycles via C–C bond formation.⁵ In continuation of our work on palladium chemistry, we have developed a methodology for the synthesis of benzo[c]chromene deriv-

atives via domino Suzuki coupling⁶ followed by intramolecular Michael addition reaction in water catalysis by metal nanoparticles that has proven its novelty toward cross coupling since last few years. Recently Liang and his co-workers synthesized these by palladium-catalyzed annulations of arynes with 2-(2-idophenoxy)-1-arylethanones and Ferraccioli and co-workers by palladium- and nobornene-catalyzed reaction of aryl halides, osubstituted with electron releasing substituents, o-bromophenols, and activated alkenes, Satyanarayana and co-workers by a domino palladium-catalyzed C-C and C-O bonds formation via dual O-H bond activation and very recently Xu and co-workers by palladium-catalyzed tandem reactions of β -(2-bromophenyl)- α , β -unsaturated carbonyl compounds with 2-hydroxyphenylboronic acid.

Figure 1. Bioactive molecules containing benzo[c]chromene moieties.

^{*} Corresponding author. Tel.: +91 3222283326; fax: +91 3222282252. E-mail address: jkray@chem.iitkgp.ernet.in (J.K. Ray).

Scheme 1. Wittig reaction with 2-bromocarboxaldehydes.

Scheme 2. Synthesis of benzo[*c*]chromene derivative.

Table 1Optimal condition determination^{a,b}

Entry	Catalyst	Ligand	Base	Temp (°C)	Yield ^c (%)
1	Pd(PPh ₃) ₄	_	K ₃ PO ₄	100	80
2	$Pd(OAc)_2$	PPh_3	K_3PO_4	100	82
3	Pd(OAc) ₂	_	K_3PO_4	100	90
4	$Pd(OAc)_2$	_	K_3PO_4	90	88
5	$Pd(OAc)_2$	_	Cs_2CO_3	100	75
6	$Pd(OAc)_2$	_	Na_2CO_3	100	55
7	$Pd(OAc)_2$	_	K_2CO_3	100	52
8	PdCl ₂	_	K_3PO_4	90	82

 $^{^{\}rm a}$ Reagents and conditions: 3a (1 mmol), 2-hydroxyphenylboronic acid (1.6 mmol),catalyst (10 mol %), base (4 mmol), TBAB (0.5 mmol), and water (6 mL) heated at 100 °C for 3 h.

Herein, we report aerobic ligand-free in situ generated palladium nanoparticles catalyzed a general methodology for the synthesis of substituted benzo[c]chromenes by the treatment of 2-hydroxyphenylboronic acid with β -(2-bromoaryl)- α , β -unsaturated carbonyl compounds where C–C followed by C–O bonds are formed simultaneously in a domino Suzuki coupling followed by Michael addition fashion in water.

The starting materials for the domino reactions were prepared by the Wittig reaction. Wittig products **3a–3h** were synthesized in 75–90% by the treatment of 1-(triphenylphosphoranylidene)-2-propanone **2** with 2-bromocarboxaldehydes **1a–1h** in dry DCM at 0 °C to rt for 3 h (Scheme 1).¹¹

Initially precursor $\bf 3a$ on domino reaction with 2-hydrox-yphenylboronic acid $\bf 4$ in the presence of $Pd(PPh_3)_4$ catalyst, K_3PO_4 as base, and TBAB in water at $100\,^{\circ}C$ for 3 h yielded

Table 2Synthesis of various benzo[c]chromene derivatives^a

$$\begin{array}{c}
O \\
HO \\
Br
\end{array} + HO \\
HO)_2B \\
\hline
\begin{array}{c}
Pd(OAc)_2, K_3PO_4 \\
\hline
TBAB, water \\
100 °C, 3h
\end{array}$$
5a-5h

Entry	Substrate	Product	Yield ^b (%)
1	O Br	O 5a	90
2	O Br		87
3	Br O	5c	72
4	O Br 3d	O 5d	78
5	O Br 3e	O 5e	74
6	F Br	F O Sf	82
7	O Br	O O O O O O O O O O O O O O O O O O O	76
8	Br O	O	78

 $[^]a$ Reagents and conditions: all the reactions were carried out under the following conditions: substrates $\bf 3a-3h$ (1 mmol), 2-hydroxyphenylboronic acid (1.6 mmol), Pd(OAc) $_2$ (10 mol %), TBAB (0.5 mmol), $\rm K_3PO_4$ (4 mmol), water (6 mL) at 100 °C, reaction time 3 h.

 $^{^{\}rm b}$ Reaction was done in a two-necked round-bottomed flask fitted with condenser.

 $^{^{\}rm c}$ Yields refer to the isolated yields after purification through column chromatography.

^b Yields were determined after purification through column chromatography.

Download English Version:

https://daneshyari.com/en/article/5265063

Download Persian Version:

https://daneshyari.com/article/5265063

<u>Daneshyari.com</u>