Tetrahedron Letters 58 (2017) 2400-2403

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Asymmetric phase-transfer catalysts bearing multiple hydrogenbonding donors: Synthesis and application in nitro-Mannich reaction of isatin-derived N-Boc ketimines

Yuxin Liu, Yu Liu, Jingdong Wang, Zhonglin Wei, Jungang Cao, Dapeng Liang, Yingjie Lin*, Haifeng Duan*

Department of Organic Chemistry, College of Chemistry, Jilin University, 699 Qianjin Street, Changchun 130012, China

ARTICLE INFO

Article history: Received 7 April 2017 Revised 4 May 2017 Accepted 9 May 2017 Available online 10 May 2017

Keywords: (APT) catalysts Bifunctional Multiple hydrogen-bonding Nitro-Mannich reaction Isatin-derived N-Boc ketimines

Introduction

The multiple hydrogen-bonding strategy used in the synthesis of organic catalysts has attracted increasing attention in recent years, compared with single and double hydrogen-bonding donors catalysts, these catalysts with the multiple H-bonding donor generally displayed higher activity and better enantioselectivity in epoxidation reaction,^{1,2} Henry reaction,³ Michael reaction^{4–9}, Mannich reaction,¹⁰ and others. Based on this strategy, a number of bifunctional asymmetric organocatalysts have been designed, such as ureas,¹¹ thioureas^{1–8} and squaramides.^{9,10} These bifuctional catalysts containing multiple-bonding donors were usually applicable for some weak acid- and base-catalyzed reactions.^{4,12–14} However, bifunctional phase-transfer catalysts bearing multiple H-bonding donors, which could be used in strong base-catalyzed reactions, are rarely synthesized and applied.^{15,16}

The asymmetric nitro-Mannich (or aza-Henry) reaction is one of the most efficient and attractive C—C bond forming reactions.^{17–19} The addition products of this reaction can easily be transformed into vicinal diamines^{20–25} and α -amino acids.²⁶ Although a lot of successful examples of nitro-Mannich reaction are based on aldimines,^{18,27–37} the nitro-Mannich reaction with ketimines^{38–41} is still rarely reported owing to their low reactivity and difficult

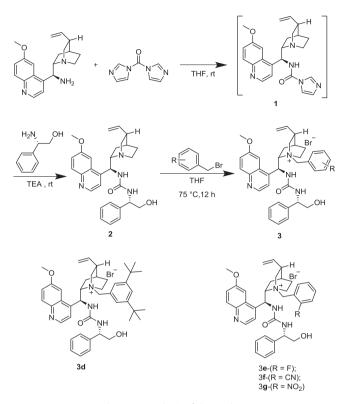
* Corresponding authors. *E-mail addresses:* linyj@jlu.edu.cn (Y. Lin), duanhf@jlu.edu.cn (H. Duan).

ABSTRACT

A series of bifunctional asymmetric phase-transfer catalysts bearing multiple hydrogen-bonding donors derived from cinchona alkaloids are synthesized, and successfully applied to asymmetric nitro-Mannich of isatin-derived N-Boc ketimines. The products 3-substituted 3-amino-oxindoles were constructed in excellent yields (96–99%) and good enantioselectivities (up to 95% ee).

© 2017 Published by Elsevier Ltd.

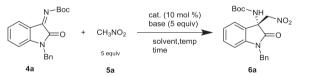
enantiocontrol. The nitro-Mannich reaction of isatin derived ketimines is the most efficient and rational approach to construct 3-substituted 3-amino-2-oxindoles,⁴²⁻⁴⁵ which bearing a stereogenic center and have been recognized as key structures in a variety of natural products and biologically active compounds.⁴² Several successful asymmetric synthesis methodologies of these compounds have been developed. For metal catalyst system, Pedro and co-workers⁴⁶ reported Cu(II)–BOX complex, Arai and co-workers⁴⁷ reported (PyBidine)-NiCl2 complex to catalyze the nitro-Mannich reaction of isatin-derived N-Boc ketimines with good yields and enantioselectivities. Metal-free catalyst system with low toxicity, low cost, easy preparation and good stability could replace metal catalyst system. Several examples have been reported. Zhou's group reported a quinine-derived bifunctional organocatalyst and resulted in moderate to good enantioselectivities.⁴⁸ Chimn's group explored a quinine-derived organocatalyst and afforded nitro-Maanich reaction products with moderate to good yields and enantioselectivities.49 Feng employed a chiral guanidine-amide and gave the corresponding products with good yields and enantioselectivities.⁵⁰ However, to the best of our knowledge, phase-transfer catalysts (PTC) system used in the nitro-Mannich reaction of isatin-derived ketimines has not been reported.


It is well known that cinchona alkaloids are one of superior chiral skeletons,^{51,52} and amino acid derivatives are one of inexpensive and accessible chiral resources.⁵³ Theoretically, using

cinchona alkaloids as privilege skeletons, and chiral amino alcohols as hydrogen bonding donors, we can construct a variety of structurally variable chiral quaternary ammonium salts containing mul-

Scheme 1. Synthesis of the Catalysts

 Table 1


 Optimization of Reaction Conditions.^a

tiple hydrogen-bonding donors. In terms of their applicability, these novel quaternary ammonium salts may be a kind of effective phase transfer catalysts for some conventional and challenging asymmetric reactions by structural screening and optimization. Based on this design strategy, we have synthesized a series of bifuctional chiral phase transfer catalysts with multiple hydrogen bonding donors (Fig. 1, 3a-3c), and successfully applied to asymmetric nitro-Mannich reactions of amidosulfones.¹¹ In order to extend their applicability in a wide range of asymmetric transformations including some challenging reactions, on basis of previous works, we further optimized the structure of this kind of catalysts and synthesized a variety of bifunctional phase transfer catalysts with multiple hydrogen bonding donors, derived from quinine and amino acohols. In the nitro-Mannich reaction of isatin-derived ketimines, these bifunctional chiral phase-transfer catalysts exhibited better asymmetric catalytic activity. Herein, we would like to report our results.

Results and discussion

Starting from known 9-amino-9-deoxyepiquinine,⁵⁴ we can get the catalysts through three steps in two pots in Scheme 1. 9-Amino-9-deoxyepiquinine was transformed with N,N'-carbonyldiimidazole to the corresponding carbamoylimidazole. Without isolation, treatment of **1** with L-phenylglycinol gave rise to urea **2**.¹¹ Subsequent quaternization with various benzyl bromides afforded catalysts **3d**–**3g**.

With catalysts **3a**–**3g** in hand, we began the reaction between isatin-derived ketimine **4a** and nitromethane **5a** in the presence of 10% catalyst **3a** and 5 equiv base at -20 °C in CHCl₃ with 10 µL H₂O (Table 1). Initially, we tested finely ground 5 equiv K₂CO₃, KOH, NaOH, LiOH·H₂O as the basic additive respectively, they all gave the desired nitro-Mannich product **6a** in 99% yield

	Cat	Base	Solvent	Temp (°C)	Yield ^b (%)	Time (h)	ee ^c (%)
1	3a	K ₂ CO ₃	CHCl ₃	-20	99	12	59
2	3a	КОН	CHCl ₃	-20	99	5	50
3	3a	NaOH	CHCl ₃	-20	99	6	73
4	3a	LiOH-H ₂ O	CHCl ₃	-20	99	6	75
5	3b	LiOH-H ₂ O	CHCl ₃	-20	99	6	73
6	3c	LiOH-H ₂ O	CHCl ₃	-20	99	6	70
7	3d	LiOH H ₂ O	CHCl ₃	-20	99	6	81
8	3e	LiOH H ₂ O	CHCl ₃	-20	99	8	69
9	3f	LiOH H ₂ O	CHCl ₃	-20	99	8	63
10	3g	LiOH·H ₂ O	CHCl ₃	-20	99	6	61
11	3i	LiOH·H ₂ O	CHCl ₃	-20	99	12	63
12	3d	LiOH·H ₂ O	THF	-20	99	10	46
13	3d	LiOH·H ₂ O	Toluene	-20	99	8	78
14	3d	LiOH·H ₂ O	CH ₂ Cl ₂	-20	99	6	75
15	3d	LiOH H ₂ O	CH₃CN	-20	97	12	5
16	3d	LiOH H ₂ O	CHCl ₃	-30	99	8	84
17	3d	LiOH·H ₂ O	CHCl ₃	-40	99	10	87
18	3d	LiOH·H ₂ O	CHCl ₃	-50	99	20	88
19 ^d	3d	LiOH·H ₂ O	CHCl ₃	-40	99	20	88

^a Reactions were conducted at 0.1 mmol scale in 1 mL of solvent, when CHCl₃ w as chosen as solvent 10 μL H₂O was added. The 10 μL H₂O is important, in the absence of 10 μL H₂O, the reaction time will increase.

^b Yield of isolated product.

^c Determined by HPLC using a chiral stationary phase.

^d the reactions was performed with **3d** (5 mol%).

Download English Version:

https://daneshyari.com/en/article/5265168

Download Persian Version:

https://daneshyari.com/article/5265168

Daneshyari.com